Please wait a minute...
材料导报  2022, Vol. 36 Issue (15): 21030222-10    https://doi.org/10.11896/cldb.21030222
  金属与金属基复合材料 |
新型La-Mg-Ni系储氢合金相结构及其制备工艺研究进展
纪铭悦1, 田晓1,2,3,*, 刘昕瑀1, 田璐1, 杨艳春1,2,3, 塔娜1,2,3
1 内蒙古师范大学物理与电子信息学院,呼和浩特 010022
2 内蒙古师范大学功能材料物理与化学自治区重点实验室,呼和浩特 010022
3 内蒙古师范大学稀土功能和新能源储能材料内蒙古自治区工程研究中心,呼和浩特 010022
Research Progress of New La-Mg-Ni System Hydrogen Storage Alloy Phase Structure and Its Preparation Methods
JI Mingyue1, TIAN Xiao1,2,3,*, LIU Xinyu1, TIAN Lu1, YANG Yanchun1,2,3, TA Na1,2,3
1 School of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, China
2 Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Inner Mongolia Normal University, Hohhot 010022, China
3 Inner Mongolia Engineering and Research Center for Rare Earth Functional and New Energy Storage Materials, Inner Mongolia Normal University, Hohhot 010022, China
下载:  全 文 ( PDF ) ( 2327KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 La-Mg-Ni系储氢合金因放电容量高、能量密度大和倍率性能好而成为最有前途的镍氢电池负极材料之一。然而,La-Mg-Ni系储氢合金存在制备困难、循环稳定性较差的缺点,严重阻碍其实际应用。如何优化制备工艺、提高循环稳定性,对于La-Mg-Ni系储氢合金是要解决的首要问题,相关研究具有重要的学术价值。
一般来说,La-Mg-Ni系储氢合金主要包括AB3、A2B7以及A5B19型三种晶体结构。三种晶体结构均是由一个AB2型结构单元和一个或多个AB5型结构单元沿c轴叠加而成。实际制备的La-Mg-Ni系储氢合金通常含有多相结构,其性能与合金的结构密切相关,而合金的结构又与合金的制备工艺密切相关。采用常规熔炼法制备La-Mg-Ni系储氢合金时,由于Mg的熔点和沸点均低于其他合金成分,在熔炼过程中的高温状态下Mg极易挥发。此外,Mg的挥发导致反应难以控制,使得合金成分不准确,严重影响合金的性能。为此,研究者们尝试采用先进的方法来制备La-Mg-Ni系储氢合金,如球磨、快速凝固、高压烧结、共沉淀-还原扩散法等,同时也尝试将多种方法联合使用来制备La-Mg-Ni系储氢合金,并探究了制备工艺对La-Mg-Ni系储氢合金相结构和电化学性能的影响。近年来,联合采用两种或两种以上工艺制备La-Mg-Ni系储氢合金的研究居多。研究表明,多种制备方法联合使用能够显著改变合金的电化学性能,特别是退火处理对储氢合金的循环稳定性起到有效的改善作用。
本文首先介绍了La-Mg-Ni系储氢合金中超晶格合金相的结构。随后重点关注了近年来国内外对于La-Mg-Ni系储氢合金所采用的不同制备技术,包括熔炼法、机械合金化、烧结法、快淬法以及材料的后续处理等,并探讨了不同制备技术制得的合金的微观结构和电化学性能。同时,对各种制备方法进行综合评述,为如何制备出性能优良的La-Mg-Ni系储氢合金提供思路和依据。最后,对La-Mg-Ni系储氢合金的未来发展趋势进行了分析与展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
纪铭悦
田晓
刘昕瑀
田璐
杨艳春
塔娜
关键词:  La-Mg-Ni系储氢合金  制备方法  相结构  电化学性能    
Abstract: La-Mg-Ni system hydrogen storage alloy is considered to be one of the most promising anode materials for nickel-hydrogen battery due to its high discharge capacity, high energy density and good rate performance. However, the La-Mg-Ni system hydrogen storage alloy has the disadvantages of difficult preparation and poor cycle stability, which seriously hinder its practical application. Therefore, how to optimize the preparation process and improve the cycle stability of the La-Mg-Ni system hydrogen storage alloy is the primary problem to be solved. The related research has important academic value.
Generally speaking, La-Mg-Ni system hydrogen storage alloys mainly include three crystal structures, AB3-type, A2B7-type and A5B19-type. Each of the three crystal structures is stacked with one AB2 unit and one or more AB5 units along the c axis. The actually prepared La-Mg-Ni system hydrogen storage alloy usually contains a multi-phase structure, and its performance is closely related to the structure of the alloy, while the structure of the alloy is closely related to the preparation process of the alloy. When the La-Mg-Ni system hydrogen storage alloy is prepared by the conventional smelting method, since the melting point and the boiling point of Mg are much lower than that of other alloy components, Mg is very easy to volatilize at high temperature during the smelting process. In addition, the volatilization of Mg makes it difficult to control the reaction, and the alloy composition is inaccurate, which seriously affects the performance of the alloy. Therefore, researchers have tried preparing La-Mg-Ni system hydrogen storage alloys by advanced preparation methods such as ball milling, melt spinning, high pressure sintering, co-precipitation-reduction diffusion method, etc. At the same time, researchers have also tried combining a variety of methods to prepare La-Mg-Ni system hydrogen storage alloys. The influence of the preparation process on the alloy phase structure and its electrochemical performance has also been studied. In recent years, there have been most studies on the combination of two or more preparation processes to prepare La-Mg-Ni system hydrogen storage alloys. It is found that the combination of multiple preparation methods can also significantly improve the electrochemical properties of the La-Mg-Ni system hydrogen storage alloy, especially annealing treatment effectively improving the cycle stability of the La-Mg-Ni system hydrogen storage alloy.
The superlattice phase structure in the La-Mg-Ni system hydrogen storage alloy is firstly introduced in this paper. Then, different preparation processes of La-Mg-Ni system hydrogen storage alloys at home and abroad in recent years are focused, including melting, mechanical alloying, sintering, melt-spinning and subsequent treatment of materials. The microstructure and the electrochemical performance of the alloys prepared by different preparation techniques are explored. At the same time, various preparation methods are comprehensively reviewed, providing ideas and basis for the research on how to prepare La-Mg-Ni system hydrogen storage alloys with excellent properties. Finally, the future development trend of La-Mg-Ni system hydrogen storage alloys is analyzed and prospected.
Key words:  La-Mg-Ni system hydrogen storage alloy    preparation process    phase structure    electrochemical property
出版日期:  2022-08-10      发布日期:  2022-08-15
ZTFLH:  TM911  
基金资助: 内蒙古自治区科技计划项目(2019GG264);内蒙古师范大学研究生科研创新基金项目(CXJJS20097);内蒙古师范大学大学生创新训练项目(XCY-2001);国家自然科学基金(21865021)
通讯作者:  *nsdtx@126.com   
作者简介:  纪铭悦,2020年7月毕业于内蒙古师范大学,获得工学学士学位。现为内蒙古师范大学物理与电子信息学院硕士研究生,在田晓教授的指导下进行研究。目前主要研究领域为储氢材料。
田晓,内蒙古师范大学物理与电子信息学院教授、硕士研究生导师。1997年在内蒙古师范大学获学士学位,2004年在内蒙古大学获得硕士学位,2010年在内蒙古工业大学获博士学位,2011—2015年在内蒙古大学进行博士后研究工作。2015—2016年在北京大学化学与分子工程学院做访问学者。主要从事新能源材料、磁性材料的研究。近年来,在新能源材料和磁性材料领域发表论文60多篇,部分研究成果发表在Int. J. Hydrogen Energy、J. Alloys Compd.、J. Mater. Eng. Perform.、《无机材料学报》《稀有金属材料与工程》《材料导报》等重要杂志,出版了《金属储氢电极》学术专著。
引用本文:    
纪铭悦, 田晓, 刘昕瑀, 田璐, 杨艳春, 塔娜. 新型La-Mg-Ni系储氢合金相结构及其制备工艺研究进展[J]. 材料导报, 2022, 36(15): 21030222-10.
JI Mingyue, TIAN Xiao, LIU Xinyu, TIAN Lu, YANG Yanchun, TA Na. Research Progress of New La-Mg-Ni System Hydrogen Storage Alloy Phase Structure and Its Preparation Methods. Materials Reports, 2022, 36(15): 21030222-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030222  或          http://www.mater-rep.com/CN/Y2022/V36/I15/21030222
1 Kaur M, Pal K. Journal of Energy Storage, 2019, 23, 234.
2 Jiang Z M. Journal of Shanghai Jiaotong University, 2008, 42(3), 345(in Chinese).
江泽民. 上海交通大学学报, 2008, 42(3), 345.
3 Zhang H W, Zheng X Y, Tian X, et al. Progress in Natural Science: Materials International, 2017, 27(1), 50.
4 Hirscher M, Yartys V A, Baricco M, et al. Journal of Alloys and Compounds, 2020, 827, 153548.
5 Niaz S, Manzoor T, Pandith A H. Renewable and Sustainable Energy Reviews, 2015, 50, 457.
6 Ji L Q, Zhao Y P, Wang F, et al. Metallic Functional Materials, 2019, 26(6), 23(in Chinese).
吉力强, 赵英朋, 王凡, 等. 金属功能材料, 2019, 26(6), 23.
7 Yang S Q, Han S M, Song J Z, et al. Journal of Rare Earths, 2011, 29(7), 692.
8 Zhou Z L, Song Y Q, Qian W L, et al. Journal of the Chinese Rare Earth Society, 2007(6), 713 (in Chinese).
周增林, 宋月清, 钱文连, 等. 中国稀土学报, 2007(6), 713.
9 Zhang Y H, Gao J L, Xu S, et al. Metallic Functional Materials, 2014, 21(6), 1(in Chinese).
张羊换, 高金良, 许胜, 等. 金属功能材料, 2014, 21(6), 1.
10 Kadir K, Sakai T, Uehara I. Journal of Alloys and Compounds, 1997, 257(1-2), 115.
11 Zhang X, Wu Z, Yi H P, et al. Materials Reports, 2016, 30(Z2), 227 (in Chinese).
张弦, 吴珍, 易汉平, 等. 材料导报, 2016, 30(Z2), 227.
12 Liu Y F, Cao Y H, Li H, et al. Journal of Alloys and Compounds, 2011, 509(3), 675.
13 Yang X F. An investigation on the phase structure and electrochemical properties of the La-Mg-Ni-based A2B7 and A5B19 type hydrogen storage electrode alloys. Master's Thesis, Lanzhou University of Technology, China, 2009 (in Chinese).
杨晓峰. La-Mg-Ni系A2B7与A5B19型储氢合金的相结构与电化学性能研究. 硕士学位论文, 兰州理工大学, 2009.
14 Iwase K, Mori K, Hoshikawa A,et al. International Journal of Hydrogen Energy, 2012, 37(6), 5122.
15 Akiba E, Hayakawa H, Kohno T. Journal of Alloys and Compounds, 2006, 408-412, 280.
16 Dunlap B D, Viccaro P J, Shenoy G K. Journal of the Less Common Me-tals, 1980, 74(1), 75.
17 Deng A Q. An investigation on the phase structure and electrochemical properties of the La-Mg-Ni-based A2B7 and A5B19 type hydrogen storage electrode alloys. Master's Thesis, Lanzhou University of Technology, China, 2007 (in Chinese).
邓安强. La-Mg-Ni系A2B7与A5B19型贮氢电极合金的相结构与电化学性能研究. 硕士学位论文, 兰州理工大学, 2007.
18 Du Q C. Study of the hydrogen storage properties of La-Mg-Ni system A2B7 type alloys. Master's Thesis, Lanzhou University of Technology, China, 2005 (in Chinese).
杜青春. La-Mg-Ni系A2B7型合金储氢性能的研究. 硕士学位论文, 兰州理工大学, 2005.
19 Khan Y. Acta Crystal, 1974, B30, 1533.
20 Wang W F, Zhang L, Rodriguez P I A, et al. Electrochimica Acta, 2019, 317, 211.
21 Young K, Ouchi T, Huang B. Journal of Power Sources, 2012, 215, 152.
22 Virkar A V, Raman A. Journal of the Less-Common Metals, 1969, 18(18), 59.
23 Buschow K H J, van Der Goot A S. Journal of the Less-Common Metals, 1970, 22, 419.
24 Yang X F, Luo Y C, Kang L, et al. China Foundry Machinery & Technology, 2009(4), 5(in Chinese).
杨晓峰, 罗永春, 康龙. 中国铸造装备与技术, 2009(4), 5.
25 Wei F S, Xu X L, Xiao J N, et al. The Chinese Journal of Nonferrous Metals, 2016(3), 586(in Chinese).
魏范松, 胥小丽, 肖佳宁, 等. 中国有色金属学报, 2016(3), 586.
26 Zhang Q A, Fang M, Si T, et al. The Journal of Physical Chemistry C, 2010, 114(26), 11686.
27 Zhou X, Chen Q, Wang A, et al. ACS Applied Materials & Interfaces, 2016, 8(6), 3776.
28 Hu J. Study on preparation and properties of A2B7-type storage alloys for low self-discharge MH/Ni batteries. Master's Thesis, South China University of Technology, China, 2016 (in Chinese).
胡杰. 低自放电镍氢电池用A2B7型储氢合金的制备工艺及性能研究. 硕士学位论文, 华南理工大学, 2016.
29 Young K, Ouchi T, Huang B. Journal of Power Sources, 2014, 248, 147.
30 Sun X, Kan H M, Wei X D, et al. New Chemical Materials, 2019, 47(11), 232(in Chinese).
孙欣, 阚洪敏, 魏晓冬, 等. 化工新型材料, 2019, 47(11), 232.
31 Oesterreicher H, Bittner H. Journal of the Less-Common Metals, 1980, 73(2), 339.
32 Wang L W. Investigation on the phase structure and electrochemical performances of La-Mg-Ni hydrogen storage alloys. Master's Thesis, Inner Mongolia University of Science and Technology, China, 2009 (in Chinese).
王利伟. La-Mg-Ni系储氢合金结构与电化学性能研究. 硕士学位论文, 内蒙古科技大学, 2009.
33 Hou Z H. Investigation on the phase structure and electrochemical performances of La-Mg-Ni system A2B7-type hydrogen storage alloys. Master's Thesis, Inner Mongolia University of Science and Technology, China, 2010 (in Chinese).
侯忠辉. La-Mg-Ni系A2B7型贮氢合金相结构与电化学性能的研究. 硕士学位论文, 内蒙古科技大学, 2010.
34 Shi H, Han S, Jia Y, et al. Journal of Rare Earths, 2013, 31(1), 79.
35 Yang T. Structures and hydrogen storage properties of La-Mg-Ni-based AB2-type alloys. Master's Thesis, Inner Mongolia University of Science and Technology, China, 2010 (in Chinese).
杨泰. La-Mg-Ni系AB2型贮氢合金相结构及性能的研究. 硕士学位论文, 内蒙古科技大学, 2013.
36 Yang T, Yuan Z, Bu W, et al. Materials & Design, 2016, 93, 46.
37 Fan Y P, Zhang L, Xue C, et al. Journal of Alloys and Compounds, 2017, 727, 398.
38 Liu Y F, Ying T, Fan H G. Chinese Journal of Materials Research, 2003(4), 380(in Chinese).
刘永锋, 应窕, 潘洪革. 材料研究学报, 2003(4), 380.
39 Song Y Q, Zhou Z L, Cui S. Chinese Journal of Rare Metals, 2006(1), 114(in Chinese).
宋月清, 周增林, 崔舜. 稀有金属, 2006(1), 114.
40 Tan J B, Zeng X Q, Zou J X, et al. Transactions of Nonferrous Metals Society of China, 2013, 23(8), 2307.
41 Zhang L S, Wang Z M, Guo Y Q. Scientia Sinica-Physica, Mechanica & Astronomica, 2012, 42(7), 746(in Chinese).
张鲁山, 王智敏, 郭永权. 中国科学: 物理学 力学 天文学, 2012, 42(7), 746.
42 Qi Y, Zhang Y H, Zhang W, et al. International Journal of Hydrogen Energy, 2017, 42(28), 18473.
43 Benjamin J S. Metallurgical and Materials Transactions, 1970, 1, 2943.
44 Yang J Y, Zhang T J, Li X G, et al. Journal of Functional Materials, 1995(5), 477(in Chinese).
杨君友, 张同俊, 李星国, 等. 功能材料, 1995(5), 477.
45 Duan R X, Tian X, Zhao F Q, et al. Materials Reports A:Review Papers, 2016, 30(6), 20(in Chinese).
段如霞,田晓,赵凤岐,等. 材料导报:综述篇, 2016, 30(6), 20.
46 Ju Y, Li Z Q. Journal of Functional Materials, 2002(1), 12(in Chinese).
居毅, 李宗权. 功能材料, 2002(1), 12.
47 Guo L. Electrical Engineering Materials, 2009(4), 23(in Chinese).
郭亮. 电工材料, 2009(4), 23.
48 Dymek M, Nowak M, Jurczyk M, et al. Journal of Alloys and Compounds, 2018, 749, 534.
49 Wang Z M, Zhou H Y, Gu Z F, et al. Journal of Alloys and Compounds, 2014, 377(1-2), L7.
50 Chu H, Qiu S, Tian Q, et al. International Journal of Hydrogen Energy, 2017, 32(18), 4925.
51 Werwiński M, Szajek A, Marczyńska A, et al. Journal of Alloys and Compounds, 2018, 763, 951.
52 Liu Z Q. Study on the structure and electrochemical properties of La-Mg-Ni-based hydrogen storage electrode alloys. Master's Thesis, South China University of Technology, China, 2012 (in Chinese).
柳忠琪. La-Mg-Ni系储氢电极合金的结构及其电化学性能的研究. 硕士学位论文, 华南理工大学, 2012.
53 Zhang Y H, Hou Z H, Zhang G F, et al. Journal of Inner Mongolia University of Science and Technology, 2012,31(1), 44(in Chinese).
张羊换, 侯忠辉, 张国芳, 等. 内蒙古科技大学学报, 2012, 31(1), 44.
54 Zou X W, Yang X F, Zhang M G, et al. Special Casting Nonferrous Alloys, 2010, 30(12), 1153(in Chinese).
邹欣伟, 杨晓峰, 张敏刚. 特种铸造及有色合, 2010, 30(12), 1153.
55 Zhang Y H, Cai Y, Yang T, et al. Rare Metal Materials and Enginee-ring, 2013, 42(11), 2201.
56 Dong X P, Lu F X, Zang Y H, et al. Rare Metals, 2006, 25(6), 207.
57 Zhang Y H, Shang H W, Li Y Q, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2018, 33(4), 812.
58 Li Y M, Liu Z C, Zhang G F, et al. Journal of Rare Earths, 2019, 37, 1305.
59 Zhai T T, Yuan Z M, Hu F, et al. International Journal of Hydrogen Energy, 2019, 44(56), 29590.
60 Liao B, Lei Y Q, Lyu G L, et al. Acta Metallurgica Sinica, 2005(1), 41(in Chinese).
廖彬, 雷永泉, 吕光烈, 等. 金属学报, 2005(1), 41.
61 Liu J J, Han S M, Li Y, et al. International Journal of Hydrogen Energy, 2015, 40(2), 1116.
62 Zhao Y M, Zhang S, Liu X X, et al. International Journal of Hydrogen Energy, 2018, 43(37), 17809.
63 Zhao Y M, Liu X X, Zhang S, et al. Intermetallics, 2020, 124, 106852.
64 Liu J J, Han S M, Li Y, et al. Electrochimica Acta, 2013, 111, 18.
65 Csáki Š, Lukáč F, Húlan T, et al. Journal of the European Ceramic Society, 2021, 42(8), 4618.
66 Han C L, Shen X F, Wang Y, et al. Aeronautical Manufacturing Techno-logy, 2019, 62(22), 43(in Chinese).
韩翠柳, 沈学峰, 王衍, 等. 航空制造技术, 2019, 62(22), 43.
67 An F Q, Li P, Qu X H, et al. Journal of University of Science and Technology Beijing, 2008, 30(3), 263(in Chinese).
安富强, 李平, 曲选辉, 等. 北京科技大学学报, 2008, 30(3), 263.
21030222-968 Dong X P, Yang L Y, Lin Y F, et al. Rare Metals and Cemented Carbides, 2010, 38(1), 11(in Chinese).
董小平, 杨丽颖, 林玉芳, 等. 稀有金属与硬质合金, 2010, 38(1), 11.
69 Dong X P, Pang Y R, Wang Q, et al. Transportations of Materials and Heat Treatment, 2014, 35(5), 20(in Chinese).
董小平, 庞艳荣, 王青, 等. 材料热处理学报, 2014, 35(5), 20.
70 Si T Z, Zhang Q A, Liu N, et al. Journal of Anhui University Technology, 2010, 27(2), 127(in Chinese).
斯庭智, 张庆安, 刘宁, 等. 安徽工业大学学报(自然科学版), 2010, 27(2), 127.
71 Si T Z, Zhang Q A, Liu N. International Journal of Hydrogen Energy, 2008, 33(6), 1729.
72 Tan C. The study on La-Mg-Ni-Co-based hydrogen storage alloy by the coprecipitation-reduction-diffusion method. Master's Thesis, Huazhong University of Science & Technology, China, 2013 (in Chinese).
谭聪. 共沉淀-还原扩散法制备La-Mg-Ni-Co系储氢合金的研究. 硕士学位论文,华中科技大学, 2013.
73 Li Z X, Zhu W, Tan C, et al. Rare Metal Materials and Engineering, 2015, 44(2), 397(in Chinese).
李振轩, 朱文, 谭聪, 等.稀有金属材料与工程, 2015, 44(2), 397.
74 Zhang S Q, Wang D H, Hou X P, et al. Rare Metal Materials and Engineering, 2012, 41(12), 2075.
75 Li Q, Lin Q, Jiang L J, et al. Chinese Journal of Rare Metals, 2002(5), 386(in Chinese).
李谦, 林勤, 蒋利军, 等. 稀有金属, 2002(5), 386.
76 Gu H, Zhu Y F, Li L Q. International Journal of Hydrogen Energy, 2008, 33(12), 2970.
77 Zou J X, Guo H, Zeng X P,et al. International Journal of Hydrogen Energy, 2013, 38(21), 8852.
78 Zhao X, Dr. Ke D D, Cai Y, et al. Chemistry Select, 2019, 4(27), 8165.
79 Nakamura J, Iwase K, Hayakawa H,et al. The Journal of Physical Che-mistry C, 2009, 113(14), 5853.
80 Liu J J, Yan Y K, Cheng H H, et al. Journal of Power Sources, 2017, 351, 26.
81 Liu J J, Han S M, Li Y, et al. Journal of Alloys and Compounds, 2013, 552, 119.
82 Lu H H. Study on the La-Mg-Ni-based A5B19 type hydrogen storage alloys. Master's Thesis, Jiangsu University of Science and Technology, China, 2014 (in Chinese).
陆欢欢. La-Mg-Ni系A5B19型贮氢合金的研究. 硕士学位论文,江苏科技大学, 2014.
83 Miao H, Lin Y, Li R, et al. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2007, 46(S1), 310.
84 Zhang F L, Luo Y C, Chen J P, et al. Journal of Power Sources, 2005, 150, 247.
85 Chen Y F, Dong X P, Ma Y R, et al. Rare Metals and Cemented Carbides, 2020, 48(2), 28(in Chinese).
陈亚方, 董小平, 马玉蕊, 等. 稀有金属与硬质合金, 2020, 48(2), 28.
86 Liu J J, Cheng H H, Han S M, et al. Energy, 2019, 192(1),116617.
87 Wan C B, Hu W K, Denys R V, et al. Journal of Alloys and Compounds, 2020, 856(5), 157443.
88 Bai T Y, Han S M, Zhu X L, et al. Materials Chemistry and Physics, 2009, 117(1), 173.
89 Xiao L L, Wang Y J, Liu Y, et al. International Journal of Hydrogen Energy, 2008, 33(14), 3925.
90 Ding H L, Han S M, Liu Y, et al. International Journal of Hydrogen Energy, 2009, 34(23), 9402.
91 Ding H L, Hao J S, Zhu X L, et al. Journal of Inorganic Materials, 2010, 25(6), 647(in Chinese).
丁慧玲, 蒿建生, 朱惜林, 等. 无机材料学报, 2010, 25(6), 647.
92 Li Y, Han S M, Liu Z P. International Journal of Hydrogen Energy, 2010, 35(23), 12858.
93 Shen W Z, Han S M, Li Y, et al. Materials Chemistry and Physics, 2012, 132(2-3), 852.
[1] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[2] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[3] 闫时雨, 纪文涛, 谢克强, 袁晓磊. 宽禁带半导体β-Ga2O3单晶制备工艺研究进展[J]. 材料导报, 2022, 36(Z1): 21050183-6.
[4] 陈杰, 樊正阳, 毛华明, 尹俊刚, 李耀, 代伟, 杨宏伟. 镀银铜纳米颗粒的制备与应用研究进展[J]. 材料导报, 2022, 36(Z1): 21090201-4.
[5] 刘小伟, 孙宁, 刘湘林, 金芳军. 基于LnBaCo2O5+δ双钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(8): 20080292-6.
[6] 谢鸿翔, 项厚政, 马瑞奇, 陈雨雪, 刘国忠, 姚思远, 冒爱琴. 高熵陶瓷材料的研究进展[J]. 材料导报, 2022, 36(6): 20070201-8.
[7] 姚亿文, 杨飞跃, 赵爽, 陈国兵, 李昆锋, 杨自春. 新型陶瓷涂层的制备、结构调控及应用研究进展[J]. 材料导报, 2022, 36(23): 21010029-7.
[8] 徐英卓, 王秀凯, 常麟晖, 陈步明, 黄惠, 何亚鹏, 郭忠诚. 热处理对大变形量Zn-1.65Cu-0.15Ti合金的组织和性能的影响[J]. 材料导报, 2022, 36(23): 21030294-7.
[9] 平托, 张益帆, 宣吴静, 张育新. 空间高吸收率消杂光涂层材料的研究与应用进展[J]. 材料导报, 2022, 36(22): 22040298-12.
[10] 余剑峰, 罗凌虹, 程亮, 徐序, 王乐莹, 余永志, 夏昌奎. 钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(2): 20030066-11.
[11] 谭洁慧, 邓凌峰, 张淑娴, 李金磊, 王壮, 覃榕荣. 利用微量碳纳米管与石墨烯协同包覆提高LiCoO2正极材料的性能[J]. 材料导报, 2022, 36(2): 20100058-6.
[12] 郑敏, 杨瑾, 张华. 多孔金属材料的制备及应用研究进展[J]. 材料导报, 2022, 36(18): 20110092-16.
[13] 师晓凤, 马应霞, 李鑫, 康小雅, 李晓华, 杨海军. 静电纺聚丙烯腈基纳米纤维对重金属离子吸附性能的研究进展[J]. 材料导报, 2022, 36(18): 20090131-9.
[14] 姜超, 华楚侨, 温变英. MOFs基核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2022, 36(16): 21030206-10.
[15] 范龄元, 张梅, 郭敏. 二氧化硅气凝胶的制备、氨基改性及低温吸附CO2性能研究进展[J]. 材料导报, 2022, 36(15): 20120056-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed