Please wait a minute...
材料导报  2022, Vol. 36 Issue (23): 21010029-7    https://doi.org/10.11896/cldb.21010029
  无机非金属及其复合材料 |
新型陶瓷涂层的制备、结构调控及应用研究进展
姚亿文, 杨飞跃, 赵爽, 陈国兵, 李昆锋, 杨自春*
海军工程大学动力工程学院,武汉 430033
Research Progress on Preparation,Structure Control and Applications of Novel Ceramic Coatings
YAO Yiwen, YANG Feiyue, ZHAO Shuang, CHEN Guobing, LI Kunfeng, YANG Zichun*
College of Power Engineering,Naval University of Engineering,Wuhan 430033,China
下载:  全 文 ( PDF ) ( 13140KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 陶瓷材料在特定应用场合下常需针对性地改善其某项性能,如抗氧化、耐烧蚀、吸波/透波特性等,一种有效的解决方案是在陶瓷材料表面制备具有特殊性能的陶瓷涂层,如热障涂层、环境障涂层等。陶瓷涂层的常用制备方法包括气相沉积法、热喷涂法、溶胶-凝胶法等。目前,针对单一涂层的制备工艺已具备较为成熟的基础,研究者通过辅助增强改进或不同工艺结合等方法,加强对涂层结构的调控,从而实现性能的进一步优化。
近年来,探索具有优异性能的新涂层体系以及对涂层成分、结构的精确调控成为了陶瓷涂层研究的热点。稀土化合物本身具备优异的性能,且具有独特的掺杂改性效果,广泛应用于热/环境障涂层;MAX相陶瓷兼具金属及陶瓷的优点,制备的抗氧化涂层具备优异的自愈合特性;此外,在复相陶瓷涂层体系中,实现不同相之间的互补效应,能够发挥其各自的优点。为解决单层涂层功能单一、与基体匹配性差等问题,研究者设计了不同的新型陶瓷涂层结构。多层涂层中,过渡层的引入显著提高了涂层与基体的结合强度;梯度涂层中,涂层与基体之间的成分浓度、热膨胀系数等呈梯度分布,可有效防止涂层失效;纳米相增强涂层中,纳米增强相的引入可抑制裂纹的产生和扩展,从而显著提高涂层的韧性。
本文对以上陶瓷涂层的制备工艺、材料体系和结构调控等研究进展进行了概述,在此基础上对陶瓷涂层在抗高温氧化、耐烧蚀、吸波/透波等方面的应用进行了介绍,最后对相关研究领域的前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚亿文
杨飞跃
赵爽
陈国兵
李昆锋
杨自春
关键词:  陶瓷涂层  制备方法  涂层体系  结构调控    
Abstract: Certain properties of ceramic materials often need to be improved in specific applications,such as oxidation resistance,ablation resistance and wave absorption/transmission characteristics. An effective solution is to prepare ceramic coatings with special properties on the surface of the ceramic material,such as thermal barrier coatings,environmental barrier coatings,etc. The common preparation methods of ceramic coatings include vapor deposition,thermal spraying,sol-gel method and so on. At present,the preparation process of a single coating has a relatively mature foundation. Researchers have strengthened the control of the coating structure through auxiliary enhancement improvements or the combination of different processes,so as to achieve further optimization of performance.
In recent years,the exploration of new coating systems with excellent properties and the precise control of coating composition and structure have become a hot spot in the research of the ceramic coatings. The rare earth compound itself has excellent properties and unique doping modification effects,and is widely used in thermal/environmental barrier coatings;MAX phase ceramics have the advantages of both metal and ceramic materials,and exhibit excellent self-healing properties as anti-oxidation coatings. In addition,in the multi-phase ceramic coating system,the complementary effects between different phases can be realized and their respective advantages can be exerted. In order to solve the problems of single-layer coating with single function and poor matching with the substrate,the researchers have designed different new ceramic coating structures. In the multi-layer coatings,the introduction of the transition layer significantly improves the bonding strength between the coating and the substrate;in the gradient coatings,the component concentration and the thermal expansion coefficient between the coating and the substrate are distributed in a gradient,which can effectively prevent the coating from failing. In the nano-phase reinforced coatings,the introduction of the nano-reinforcing phase can inhibit the generation and propagation of the cracks,thereby significantly improving the toughness of the coatings.
In this article,the research progress of preparation technology,material system and structure control of the above ceramic coatings are summarized. On this basis,the applications of the ceramic coatings in high temperature oxidation resistance,ablation resistance,wave absorption/wave transmission,etc. are introduced,and finally the prospects of the related research fields are expected.
Key words:  ceramic coating    preparation method    coating system    structural control
发布日期:  2022-12-09
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51802347)
通讯作者:  *yangzichun11@sina.com   
作者简介:  姚亿文,2019年6月毕业于南昌大学,获得工学学士学位。现为海军工程大学动力工程学院硕士研究生,在杨自春教授的指导下进行研究。目前主要研究领域为热防护材料。
杨自春,海军工程大学动力工程学院教授、博士研究生导师。1989年7月本科毕业于海军工程学院轮机系,1996年9月取得华中科技大学固体力学专业博士学位,2013年4月至2013年10月在美国加州大学欧文分校作高级访问学者。获国家科技进步奖二等奖1项,军队科技进步奖一等奖3项、二等奖2项。先后入选教育部“新世纪优秀人才支持计划”“新世纪百千万人才工程”国家级人选、军队高层次科技创新人才工程学科领军人才培养对象等。近年来在Journal of the American Ceramic SocietyCeramics International等期刊发表研究论文100余篇。
引用本文:    
姚亿文, 杨飞跃, 赵爽, 陈国兵, 李昆锋, 杨自春. 新型陶瓷涂层的制备、结构调控及应用研究进展[J]. 材料导报, 2022, 36(23): 21010029-7.
YAO Yiwen, YANG Feiyue, ZHAO Shuang, CHEN Guobing, LI Kunfeng, YANG Zichun. Research Progress on Preparation,Structure Control and Applications of Novel Ceramic Coatings. Materials Reports, 2022, 36(23): 21010029-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010029  或          http://www.mater-rep.com/CN/Y2022/V36/I23/21010029
1 Padture N P. Nature Materials, 2016, 15(8), 804.
2 Wang Z Y, Ma G S, Liu L L, et al.Corrosion Science, 2020, 167, 108492.
3 Rezende B A, Santos A, Cmara M A, et al. Coatings, 2019, 9(11), 755.
4 Periyasamy A P, Venkataraman M, Zhao Y. Materials, 2020, 13(8), 1838.
5 Kim H J, Kim M, Neoh K C, et al. Journal of Power Sources, 2016, 327(30), 401.
6 Bezzi F, Burgio F, Fabbri P, et al. Journal of the European Ceramic Society, 2019, 39(1), 79.
7 Niu F X, Wang Y X, Wang Y Y, et al. Surface and Coatings Technology, 2018, 344, 52.
8 Guo X Y, Li L, Park H M, et al. Journal of Thermal Spray Technology, 2018, 27, 581.
9 Karaoglanli A C, Doleker K M, Ozgurluk Y. Materials Characterization, 2019, 159, 110072.
10 Doleker K M, Karaoglanli A C, Ozgurluk Y, et al. Vacuum, 2020, 177, 109401.
11 Doleker K M, Ozgurluk Y, Ahlatci H, et al. Surface and Coatings Technology, 2019, 371, 262.
12 Garcia E, Lee H, Sampath S. Journal of the European Ceramic Society, 2019, 39(4), 1477.
13 Zhong X, Niu Y R, LI Hong, et al. Surface & Coatings Technology, 2018, 349, 636.
14 Hosseinizadeh S A, Pourebrahim A, Baharvandi H, et al. Ceramics International, 2020, 46(14), 22208.
15 Araki W, Matsumoto A, Arai Y, et al. Materialia, 2020, 12, 100718.
16 Gonzalez-julia J, Onrubia S, Bram M, et al. Journal of the American Ceramic Society, 2018, 101(2), 542.
17 Shamsipoor A, Farvizi M, Razavi M, et al. Journal of Alloys and Compounds, 2020, 815, 152345.
18 Yu L, Yang J, Qiu T, et al. Journal of the American Ceramic Society, 2014, 97(9), 2950.
19 Khalid M W, Kim Y I, Haq M A, et al. Ceramics International, 2020, 46(7), 9002.
20 Kim H S, Seo M Y, Kim I J. In:Conference Record of the 9th International Conference on Multiscale and Functionally Graded Materials. Hawaii, USA, 2008, pp.931.
21 Ren X, Tian Z, Zhang J, et al. Scripta Materialia, 2019, 168, 47.
22 Wang C A, Lu H R, Huang Z Y, et al.Journal of the American Ceramic Society, 2018, 101(3), 1095.
23 Tan W, Addueci M, Petorak C, et al. Journal of the European Ceramic Society, 2016, 36(16), 3833.
24 Tan W, Petorak C A, Trice R W. Journal of the European Ceramic Society, 2014, 34(1), 1.
25 Ryumin M A, Sazonov E G, Guskov V N, et al. Inorganic Materials, 2017, 53(7), 728.
26 Cheng C B, Fan R H, Wang C H, et al. Journal of Wuhan University of Technology, 2015, 30(2), 311.
27 Azina C, Stanislav M, Greczynski G, et al. Journal of the European Ceramic Society, 2020, 40(13), 4436.
28 Zhang Z, Lai D M Y, Lim S H, et al. Corrosion Science, 2018, 138, 266.
29 Zhang F, Yan S, Li C, et al. Journal of the European Ceramic Society, 2019, 39(16), 5132.
30 Gonzalez-Julian J, Mauer G, Sebold D, et al. Journal of the American Ceramic Society, 2020, 103(4), 2362.
31 Davis D, Anandhan V, Singh S. International Journal of Applied Ceramic Technology, 2019, 16(3), 1012.
32 Liu T, Niu Y R, Li C, et al. Corrosion Science, 2018, 145, 239.
33 Xu T, Su Y, Shi T, et al. Ceramics International, 2021, 47(2), 2165.
34 Williams P A, Sakidja R, Perepezko J H, et al. Journal of the European Ceramic Society, 2012, 32(14), 3875.
35 Momozawa A, Tu R, Goto T, et al. Vacuum, 2012, 484, 21.
36 Pizon D, Charpentier L, Lucas R, et al.Ceramics International, 2014, 40(3), 5025.
37 Garvie R C, Hannink R H, Pascoe R T. Nature, 1975, 258, 703.
38 Krause A R, Garces H F, Herrmann C E, et al. Journal of the American Ceramic Society, 2017, 100(7), 3175.
39 Zhao S, Yang F Y, Chen G B, et al. Rare Metal Materials and Engineering, 2020, 49(4), 1256(in Chinese).
赵爽, 杨飞跃, 陈国兵, 等. 稀有金属材料与工程, 2020, 49(4), 1256.
40 Ren X R, Li H J, Fu Q G, et al. Ceramics International, 2014, 40(7), 9419.
41 Fan X Y, Wang H J, Wen J B, et al. Acta Materiae Compositae Sinica, 2016, 33(5), 1097(in Chinese).
范星宇, 王红洁, 温江波, 等. 复合材料学报, 2016, 33(5), 1097.
42 Zhong Y S. Micro arc oxidation composite ceramic coating on TC4 surface and its thermal failure behavior. Ph.D. Thesis, Harbin Institute of Technology, China, 2011 (in Chinese).
钟业盛.TC4表面微弧氧化复合陶瓷涂层及其热致失效行为研究.博士学位论文, 哈尔滨工业大学, 2011.
43 Trubchik I, Evich L, Ladosha E. In: Proceedings of the 22nd International Conference on Computer Methods in Mechanics. America, 2018, pp.120011.
44 Yao D J, Li H J, Wu H, et al. Journal of the European Ceramic Society, 2016, 36(15), 3739.
45 Bai Y X, Wang Q S, Ma Z, et al. Ceramics International, 2020, 46(10), 14756.
46 Ren J C, Zhang Y L, ZHANG Jian, et al. Ceramics International, 2018, 45(10), 5321.
47 Wang C L, Tian H L, Guo M Q, et al. Ceramics International, 2020, 46(10), 16372.
48 Chu Y H, Li H J, Luo H J, et al. Corrosion Science, 2015, 92, 272.
49 Pu D M, Chen P J, Xiao P, et al. Ceramics International, 2019, 45(16), 20704.
50 Campos K S, Lenz E S G F B, Nunes E H M, et al. Ceramics International, 2019, 45(7), 8626.
51 Zhuang L, Fu Q G, Yu X, et al. Journal of the European Ceramic Society, 2018, 38(7), 2808.
52 Li G R, Yang G J, Li C X, et al. Ceramics International, 2018, 44(3), 2982.
53 Du B, Hong C Q, Zhang X H, et al. Journal of European Ceramic Society, 2018, 38(5), 2272.
54 Melia M O, Paul N, Mario V, et al. Journal of the AmericanCeramic Society, 2015, 98(4), 1300.
55 Torabi S, Valefi Z, Ehsani N. International Journal of Applied Ceramic Technology, 2020, 17(4), 1661.
56 Pan X, Niu Y, Liu T, et al. Journal of the European Ceramic Society, 2019, 39(11), 3292.
57 Monteverde F, Savino R, Fumo M D S, et al. Journal of the European Ceramic Society, 2010, 30(11), 2313.
58 Ye X L, Chen Z F, Li Min, et al. Composites Part B: Engineering, 2019, 178(1), 107479.
59 Kim S, Sievenpiper D F. IEEE Transactions on Antennas and Propagation, 2014, 62(1), 475.
60 Gier J T, Dunkle R V. In:Transactions of the Conference on the Use of Solar Energy. Tucson, 1955, pp.41.
61 Tabor H. In:Bulletin of the Research Council of Israel.Israel, 1956, pp.119.
62 Zhou L, Su G X, Wang H B, et al. Journal of Alloys & Compounds, 2019, 777, 478.
63 Dan A, Chattopadhyay K, Barshilia H C, et al. Solar Energy, 2018, 173, 192.
64 Sönmez N T, Tokan N T. IET Microwaves Antennas & Propagation, 2016, 10(14), 1485.
65 Kandi K K, Thallapalli N, Chilakalapalli S P R. International Journal of Applied Ceramic Technology, 2015, 12(5), 909.
66 Wang C, Xia Y, Qiao R Q, et al. International Journal of Applied Ceramic Technology, 2019, 16(4), 1373.
67 Sun Y S, Cai D L, Yang Z H, et al. Ceramics International, 2018, 44(13), 15764.
68 Pogrebnjak A D, Bagdasaryan A A, Beresnev V M, et al. Ceramics International, 2017, 43(1), 771.
69 Pogrebnjak A D, Yakushchenko I V, Bondar O V, et al. Journal of Alloys & Compounds, 2016, 679, 155.
70 Selli N T, Yağyemez T. Journal of the Australian Ceramic Society, 2020, 56(1), 59.
71 Martin S, Tomaž K. Journal of the European Ceramic Society, 2018, 38(15), 5264.
[1] 闫时雨, 纪文涛, 谢克强, 袁晓磊. 宽禁带半导体β-Ga2O3单晶制备工艺研究进展[J]. 材料导报, 2022, 36(Z1): 21050183-6.
[2] 陈杰, 樊正阳, 毛华明, 尹俊刚, 李耀, 代伟, 杨宏伟. 镀银铜纳米颗粒的制备与应用研究进展[J]. 材料导报, 2022, 36(Z1): 21090201-4.
[3] 谢鸿翔, 项厚政, 马瑞奇, 陈雨雪, 刘国忠, 姚思远, 冒爱琴. 高熵陶瓷材料的研究进展[J]. 材料导报, 2022, 36(6): 20070201-8.
[4] 平托, 张益帆, 宣吴静, 张育新. 空间高吸收率消杂光涂层材料的研究与应用进展[J]. 材料导报, 2022, 36(22): 22040298-12.
[5] 郑敏, 杨瑾, 张华. 多孔金属材料的制备及应用研究进展[J]. 材料导报, 2022, 36(18): 20110092-16.
[6] 师晓凤, 马应霞, 李鑫, 康小雅, 李晓华, 杨海军. 静电纺聚丙烯腈基纳米纤维对重金属离子吸附性能的研究进展[J]. 材料导报, 2022, 36(18): 20090131-9.
[7] 姜超, 华楚侨, 温变英. MOFs基核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2022, 36(16): 21030206-10.
[8] 范龄元, 张梅, 郭敏. 二氧化硅气凝胶的制备、氨基改性及低温吸附CO2性能研究进展[J]. 材料导报, 2022, 36(15): 20120056-8.
[9] 纪铭悦, 田晓, 刘昕瑀, 田璐, 杨艳春, 塔娜. 新型La-Mg-Ni系储氢合金相结构及其制备工艺研究进展[J]. 材料导报, 2022, 36(15): 21030222-10.
[10] 侯磊, 韩学锋, 邢宝林, 曾会会, 王振帅, 郭晖, 张传祥, 谌伦建. 天然矿物为模板制备功能炭材料的研究进展[J]. 材料导报, 2022, 36(12): 20080165-11.
[11] 王世界, 尹艺程, 邱鑫, 康国卫, 刘新红, 贾全利, 张少伟. 超高温多孔陶瓷的制备、性能及应用研究进展[J]. 材料导报, 2022, 36(12): 20100045-8.
[12] 韦亦泠, 邓文江, 金彩虹, 李慧, 王传明, 孟铁宏, 张文娟, 赵鸿宾, 帅光平, 杨政敏, 李春荣, 胡先运. 高荧光量子产率的二硫化钼量子点制备及荧光性能研究[J]. 材料导报, 2021, 35(z2): 13-17.
[13] 田春, 唐元洪. 硅纳米管的各种制备方法[J]. 材料导报, 2021, 35(z2): 38-45.
[14] 董宏伟, 张冠星, 董显, 薛行雁, 沈元勋. 纳米银焊膏的研究进展[J]. 材料导报, 2021, 35(z2): 341-345.
[15] 刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed