Abstract: Certain properties of ceramic materials often need to be improved in specific applications,such as oxidation resistance,ablation resistance and wave absorption/transmission characteristics. An effective solution is to prepare ceramic coatings with special properties on the surface of the ceramic material,such as thermal barrier coatings,environmental barrier coatings,etc. The common preparation methods of ceramic coatings include vapor deposition,thermal spraying,sol-gel method and so on. At present,the preparation process of a single coating has a relatively mature foundation. Researchers have strengthened the control of the coating structure through auxiliary enhancement improvements or the combination of different processes,so as to achieve further optimization of performance. In recent years,the exploration of new coating systems with excellent properties and the precise control of coating composition and structure have become a hot spot in the research of the ceramic coatings. The rare earth compound itself has excellent properties and unique doping modification effects,and is widely used in thermal/environmental barrier coatings;MAX phase ceramics have the advantages of both metal and ceramic materials,and exhibit excellent self-healing properties as anti-oxidation coatings. In addition,in the multi-phase ceramic coating system,the complementary effects between different phases can be realized and their respective advantages can be exerted. In order to solve the problems of single-layer coating with single function and poor matching with the substrate,the researchers have designed different new ceramic coating structures. In the multi-layer coatings,the introduction of the transition layer significantly improves the bonding strength between the coating and the substrate;in the gradient coatings,the component concentration and the thermal expansion coefficient between the coating and the substrate are distributed in a gradient,which can effectively prevent the coating from failing. In the nano-phase reinforced coatings,the introduction of the nano-reinforcing phase can inhibit the generation and propagation of the cracks,thereby significantly improving the toughness of the coatings. In this article,the research progress of preparation technology,material system and structure control of the above ceramic coatings are summarized. On this basis,the applications of the ceramic coatings in high temperature oxidation resistance,ablation resistance,wave absorption/wave transmission,etc. are introduced,and finally the prospects of the related research fields are expected.
作者简介: 姚亿文,2019年6月毕业于南昌大学,获得工学学士学位。现为海军工程大学动力工程学院硕士研究生,在杨自春教授的指导下进行研究。目前主要研究领域为热防护材料。 杨自春,海军工程大学动力工程学院教授、博士研究生导师。1989年7月本科毕业于海军工程学院轮机系,1996年9月取得华中科技大学固体力学专业博士学位,2013年4月至2013年10月在美国加州大学欧文分校作高级访问学者。获国家科技进步奖二等奖1项,军队科技进步奖一等奖3项、二等奖2项。先后入选教育部“新世纪优秀人才支持计划”“新世纪百千万人才工程”国家级人选、军队高层次科技创新人才工程学科领军人才培养对象等。近年来在Journal of the American Ceramic Society、Ceramics International等期刊发表研究论文100余篇。
引用本文:
姚亿文, 杨飞跃, 赵爽, 陈国兵, 李昆锋, 杨自春. 新型陶瓷涂层的制备、结构调控及应用研究进展[J]. 材料导报, 2022, 36(23): 21010029-7.
YAO Yiwen, YANG Feiyue, ZHAO Shuang, CHEN Guobing, LI Kunfeng, YANG Zichun. Research Progress on Preparation,Structure Control and Applications of Novel Ceramic Coatings. Materials Reports, 2022, 36(23): 21010029-7.
1 Padture N P. Nature Materials, 2016, 15(8), 804. 2 Wang Z Y, Ma G S, Liu L L, et al.Corrosion Science, 2020, 167, 108492. 3 Rezende B A, Santos A, Cmara M A, et al. Coatings, 2019, 9(11), 755. 4 Periyasamy A P, Venkataraman M, Zhao Y. Materials, 2020, 13(8), 1838. 5 Kim H J, Kim M, Neoh K C, et al. Journal of Power Sources, 2016, 327(30), 401. 6 Bezzi F, Burgio F, Fabbri P, et al. Journal of the European Ceramic Society, 2019, 39(1), 79. 7 Niu F X, Wang Y X, Wang Y Y, et al. Surface and Coatings Technology, 2018, 344, 52. 8 Guo X Y, Li L, Park H M, et al. Journal of Thermal Spray Technology, 2018, 27, 581. 9 Karaoglanli A C, Doleker K M, Ozgurluk Y. Materials Characterization, 2019, 159, 110072. 10 Doleker K M, Karaoglanli A C, Ozgurluk Y, et al. Vacuum, 2020, 177, 109401. 11 Doleker K M, Ozgurluk Y, Ahlatci H, et al. Surface and Coatings Technology, 2019, 371, 262. 12 Garcia E, Lee H, Sampath S. Journal of the European Ceramic Society, 2019, 39(4), 1477. 13 Zhong X, Niu Y R, LI Hong, et al. Surface & Coatings Technology, 2018, 349, 636. 14 Hosseinizadeh S A, Pourebrahim A, Baharvandi H, et al. Ceramics International, 2020, 46(14), 22208. 15 Araki W, Matsumoto A, Arai Y, et al. Materialia, 2020, 12, 100718. 16 Gonzalez-julia J, Onrubia S, Bram M, et al. Journal of the American Ceramic Society, 2018, 101(2), 542. 17 Shamsipoor A, Farvizi M, Razavi M, et al. Journal of Alloys and Compounds, 2020, 815, 152345. 18 Yu L, Yang J, Qiu T, et al. Journal of the American Ceramic Society, 2014, 97(9), 2950. 19 Khalid M W, Kim Y I, Haq M A, et al. Ceramics International, 2020, 46(7), 9002. 20 Kim H S, Seo M Y, Kim I J. In:Conference Record of the 9th International Conference on Multiscale and Functionally Graded Materials. Hawaii, USA, 2008, pp.931. 21 Ren X, Tian Z, Zhang J, et al. Scripta Materialia, 2019, 168, 47. 22 Wang C A, Lu H R, Huang Z Y, et al.Journal of the American Ceramic Society, 2018, 101(3), 1095. 23 Tan W, Addueci M, Petorak C, et al. Journal of the European Ceramic Society, 2016, 36(16), 3833. 24 Tan W, Petorak C A, Trice R W. Journal of the European Ceramic Society, 2014, 34(1), 1. 25 Ryumin M A, Sazonov E G, Guskov V N, et al. Inorganic Materials, 2017, 53(7), 728. 26 Cheng C B, Fan R H, Wang C H, et al. Journal of Wuhan University of Technology, 2015, 30(2), 311. 27 Azina C, Stanislav M, Greczynski G, et al. Journal of the European Ceramic Society, 2020, 40(13), 4436. 28 Zhang Z, Lai D M Y, Lim S H, et al. Corrosion Science, 2018, 138, 266. 29 Zhang F, Yan S, Li C, et al. Journal of the European Ceramic Society, 2019, 39(16), 5132. 30 Gonzalez-Julian J, Mauer G, Sebold D, et al. Journal of the American Ceramic Society, 2020, 103(4), 2362. 31 Davis D, Anandhan V, Singh S. International Journal of Applied Ceramic Technology, 2019, 16(3), 1012. 32 Liu T, Niu Y R, Li C, et al. Corrosion Science, 2018, 145, 239. 33 Xu T, Su Y, Shi T, et al. Ceramics International, 2021, 47(2), 2165. 34 Williams P A, Sakidja R, Perepezko J H, et al. Journal of the European Ceramic Society, 2012, 32(14), 3875. 35 Momozawa A, Tu R, Goto T, et al. Vacuum, 2012, 484, 21. 36 Pizon D, Charpentier L, Lucas R, et al.Ceramics International, 2014, 40(3), 5025. 37 Garvie R C, Hannink R H, Pascoe R T. Nature, 1975, 258, 703. 38 Krause A R, Garces H F, Herrmann C E, et al. Journal of the American Ceramic Society, 2017, 100(7), 3175. 39 Zhao S, Yang F Y, Chen G B, et al. Rare Metal Materials and Engineering, 2020, 49(4), 1256(in Chinese). 赵爽, 杨飞跃, 陈国兵, 等. 稀有金属材料与工程, 2020, 49(4), 1256. 40 Ren X R, Li H J, Fu Q G, et al. Ceramics International, 2014, 40(7), 9419. 41 Fan X Y, Wang H J, Wen J B, et al. Acta Materiae Compositae Sinica, 2016, 33(5), 1097(in Chinese). 范星宇, 王红洁, 温江波, 等. 复合材料学报, 2016, 33(5), 1097. 42 Zhong Y S. Micro arc oxidation composite ceramic coating on TC4 surface and its thermal failure behavior. Ph.D. Thesis, Harbin Institute of Technology, China, 2011 (in Chinese). 钟业盛.TC4表面微弧氧化复合陶瓷涂层及其热致失效行为研究.博士学位论文, 哈尔滨工业大学, 2011. 43 Trubchik I, Evich L, Ladosha E. In: Proceedings of the 22nd International Conference on Computer Methods in Mechanics. America, 2018, pp.120011. 44 Yao D J, Li H J, Wu H, et al. Journal of the European Ceramic Society, 2016, 36(15), 3739. 45 Bai Y X, Wang Q S, Ma Z, et al. Ceramics International, 2020, 46(10), 14756. 46 Ren J C, Zhang Y L, ZHANG Jian, et al. Ceramics International, 2018, 45(10), 5321. 47 Wang C L, Tian H L, Guo M Q, et al. Ceramics International, 2020, 46(10), 16372. 48 Chu Y H, Li H J, Luo H J, et al. Corrosion Science, 2015, 92, 272. 49 Pu D M, Chen P J, Xiao P, et al. Ceramics International, 2019, 45(16), 20704. 50 Campos K S, Lenz E S G F B, Nunes E H M, et al. Ceramics International, 2019, 45(7), 8626. 51 Zhuang L, Fu Q G, Yu X, et al. Journal of the European Ceramic Society, 2018, 38(7), 2808. 52 Li G R, Yang G J, Li C X, et al. Ceramics International, 2018, 44(3), 2982. 53 Du B, Hong C Q, Zhang X H, et al. Journal of European Ceramic Society, 2018, 38(5), 2272. 54 Melia M O, Paul N, Mario V, et al. Journal of the AmericanCeramic Society, 2015, 98(4), 1300. 55 Torabi S, Valefi Z, Ehsani N. International Journal of Applied Ceramic Technology, 2020, 17(4), 1661. 56 Pan X, Niu Y, Liu T, et al. Journal of the European Ceramic Society, 2019, 39(11), 3292. 57 Monteverde F, Savino R, Fumo M D S, et al. Journal of the European Ceramic Society, 2010, 30(11), 2313. 58 Ye X L, Chen Z F, Li Min, et al. Composites Part B: Engineering, 2019, 178(1), 107479. 59 Kim S, Sievenpiper D F. IEEE Transactions on Antennas and Propagation, 2014, 62(1), 475. 60 Gier J T, Dunkle R V. In:Transactions of the Conference on the Use of Solar Energy. Tucson, 1955, pp.41. 61 Tabor H. In:Bulletin of the Research Council of Israel.Israel, 1956, pp.119. 62 Zhou L, Su G X, Wang H B, et al. Journal of Alloys & Compounds, 2019, 777, 478. 63 Dan A, Chattopadhyay K, Barshilia H C, et al. Solar Energy, 2018, 173, 192. 64 Sönmez N T, Tokan N T. IET Microwaves Antennas & Propagation, 2016, 10(14), 1485. 65 Kandi K K, Thallapalli N, Chilakalapalli S P R. International Journal of Applied Ceramic Technology, 2015, 12(5), 909. 66 Wang C, Xia Y, Qiao R Q, et al. International Journal of Applied Ceramic Technology, 2019, 16(4), 1373. 67 Sun Y S, Cai D L, Yang Z H, et al. Ceramics International, 2018, 44(13), 15764. 68 Pogrebnjak A D, Bagdasaryan A A, Beresnev V M, et al. Ceramics International, 2017, 43(1), 771. 69 Pogrebnjak A D, Yakushchenko I V, Bondar O V, et al. Journal of Alloys & Compounds, 2016, 679, 155. 70 Selli N T, Yağyemez T. Journal of the Australian Ceramic Society, 2020, 56(1), 59. 71 Martin S, Toma K. Journal of the European Ceramic Society, 2018, 38(15), 5264.