Please wait a minute...
材料导报  2022, Vol. 36 Issue (15): 20120056-8    https://doi.org/10.11896/cldb.20120056
  无机非金属及其复合材料 |
二氧化硅气凝胶的制备、氨基改性及低温吸附CO2性能研究进展
范龄元, 张梅, 郭敏*
北京科技大学冶金与生态工程学院,北京 100083
Preparation and Amino Modification of Silica Aerogel and Its Low Temperature Adsorption of CO2: a Review
FAN Lingyuan, ZHANG Mei, GUO Min*
School of Metallurgy and Ecological Engineering, Beijing University of Science and Technology, Beijing 100083, China
下载:  全 文 ( PDF ) ( 3226KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着温室效应的加剧,全球气候变暖、极端天气层出不穷,CO2的高效捕集与封存势在必行。目前针对CO2捕获技术主要包括胺溶液的吸收以及固体吸附剂的吸附分离。相比于液体吸收腐蚀性较强及易产生废弃物等不足,低温固体吸附剂因其使用过程对设备要求简单、能耗较低且环境友好,引起人们的广泛关注。其中,二氧化硅气凝胶比表面积大、孔隙率高、孔径可控、表面易于修饰改性,低温下CO2吸附量远高于沸石及活性炭,近年来,在CO2吸附领域成为研究者关注的热点。
影响SiO2气凝胶吸附CO2性能的主要因素有两个方面:一是气凝胶本身的结构特点,包括孔径、孔结构、比表面积及孔隙率等;二是气凝胶表面的官能团,包括碱性基团的数量及分布等,后者起着决定性作用。大量研究围绕气凝胶的修饰改性展开,目前主要采取氨基功能化、氮掺杂等方式引入碱性位点,从而大大提升SiO2气凝胶对CO2的吸附性能。然而改性剂有机胺的选择及其负载量、吸附剂中微孔/介孔/大孔的比例对CO2吸附性能的影响机制尚不明晰。因此,基于SiO2改性气凝胶孔结构的设计、碱性位点数量及其分布调控成为CO2吸附性能进一步提升的关键所在。同时,提高吸附速率、优化制备工艺、降低生产成本也是未来研究工作的重点。
本文综述了SiO2气凝胶制备工艺对其微观结构的影响,归纳出SiO2气凝胶氨基改性方法以及吸附过程的吸附机理,总结了硅基气凝胶吸附CO2的研究进展,指出了目前存在的问题,为大幅度提高气凝胶CO2低温吸附性能提供科学和实际参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范龄元
张梅
郭敏
关键词:  二氧化硅气凝胶  二氧化碳吸附  氨基改性  吸附剂  制备方法    
Abstract: With the aggravation of greenhouse effect, global warming and extreme weather emerge in endlessly,and efficient capture and storage of CO2 become more and more imperative. At present, CO2 capture technology mainly includes amine solution absorption and solid adsorption. Compared with the strong corrosiveness and environmental-unfriendly characteristics of the liquid absorption, the solid adsorbents have attracted wide attention due to their simple equipment requirements, low energy consumption and environmental friendliness properties. Among them, silica aerogel, with high specific surface area, high porosity, controllable pore size, easily modified surface, has aroused much interest in the field of CO2 adsorption recently, which shows higher adsorption capacity of CO2 than zeolites and activated carbons at low temperature.
There are two main factors affecting the CO2 adsorption performance of silica aerogel. One is the structure characteristics of aerogel, including pore size, pore structure, specific surface area, porosity, etc. The other one is the number and distribution of functional groups on the surface of aerogel. Among them, the latter one plays a decisive role in the CO2 adsorption property. A lot of studies have been carried out around the modification of silica aerogel. Currently, amino acid functionalization and nitrogen doping are used to introduce alkaline sites, which greatly improve the adsorption performance of SiO2 aerogel to CO2. However, the influence of the selection of organic amines and their carrying capacity, as well as the proportion of micropores /mesopores/ macropores in the adsorbent on the adsorption performance of CO2 have not been clarified yet. Therefore, the design of pore structure of modified SiO2 aerogel and the regulation of distribution of alkaline sites has become the key issue to further improve the adsorption property of CO2. Meanwhile, improving adsorption rate, optimizing preparation process and reducing production cost are also the emphases of future research work.
In this paper, the influence of preparation technology of silica aerogel on its microstructure is reviewed, while the amino modification method of aerogel and the related adsorption mechanism during the adsorption process are concluded. In addition, the research progress of CO2 adsorption by silica aerogel is summarized and the existing problems are pointed out, which provide scientific and practical reference for improving the adsorption performance of CO2 on silica aerogel.
Key words:  silica aerogel    carbon dioxide adsorption    amino modification    adsorbent    preparation method
出版日期:  2022-08-10      发布日期:  2022-08-15
ZTFLH:  TF19  
基金资助: 国家自然科学基金联合基金项目(U1810205)
通讯作者:  *guomin@ustb.edu.cn   
作者简介:  范龄元,2019年毕业于北京科技大学,获得工学学士学位。现为北京科技大学冶金与生态工程学院在读硕士研究生,在郭敏教授的指导下进行研究。目前主要研究领域为硅基气凝胶。
郭敏,北京科技大学教授,博士研究生导师。教育部新世纪优秀人才。博士毕业于北京大学化学与分子工程学院物理化学专业。长期从事冶金一次/二次资源的高效综合利用物理化学基础与工艺,新型高效太阳能电池、纳米催化材料及环境友好材料的制备与应用,非传统资源有价元素的高效提取与分离等研究。先后承担国家重大基础研究973计划子项目、国家科技支撑项目、国家自然科学基金等项目。在国内外学术期刊Chemical Engineering Journal, Journal of Hazardous Materials, Journal of Materials Chemistry A, ACS Applied Materials & Interfaces, ACS Sustainable Chemistry & Engineering等发表SCI收录论文200余篇,H因子30,正面他引3 000余次。
引用本文:    
范龄元, 张梅, 郭敏. 二氧化硅气凝胶的制备、氨基改性及低温吸附CO2性能研究进展[J]. 材料导报, 2022, 36(15): 20120056-8.
FAN Lingyuan, ZHANG Mei, GUO Min. Preparation and Amino Modification of Silica Aerogel and Its Low Temperature Adsorption of CO2: a Review. Materials Reports, 2022, 36(15): 20120056-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120056  或          http://www.mater-rep.com/CN/Y2022/V36/I15/20120056
1 Kopp R E, Kemp A C, Horton B P, et al. Proceedings of the National Academy of Sciences, 2016, 113 (11), 1434.
2 Kemp A C, Horton B P, Donnelly J P, et al. Proceedings of the National Academy of Sciences, 2011, 108 (27), 11017.
3 Jin C, Zheng L K, Chen Q, et al. Journal of Advances in Physical Chemistry, 2017, 6 (3), 121 (in Chinese).
金灿, 郑璐康, 陈琦, 等. 物理化学进展, 2017, 6 (3), 121.
4 Wang J H, Zhao Y Y, Li J H, et al. Inoganic Chemicals Industry, 2020, 52 (4), 12 (in Chinese).
王建行, 赵颖颖, 李佳慧, 等. 无机盐工业, 2020, 52 (4), 12.
5 Figueroa J D, Fout T, Plasynski S, et al. International Journal of Greenhouse Gas Control, 2008, 2, 9.
6 Favre E. Journal of Membrane Science, 2007, 294, 50.
7 Lu X J. Modern Chemical Industry, 2015, 35 (3), 45 (in Chinese).
吕晓娟. 现代化工, 2015, 35 (3), 45.
8 Wan X, Xiao H N, Pan Y F. Journal of Synthetic Crystals, 2019, 48 (9), 1761 (in Chinese).
宛霞, 肖惠宁, 潘远凤. 人工晶体学报, 2019, 48 (9), 1761.
9 Hao G P, Li W C, Lu A H. Chemical Industry and Engineering Progress, 2012, 31 (11), 2493 (in Chinese).
郝广平, 李文翠, 陆安慧. 化工进展, 2012, 31 (11), 2493.
10 Guo Y F, Zhao C W, Li C H, et al. Applied Energy, 2014, 129, 17.
11 Himeno S, Komatsu T, Fujita S. Journal of Chemical and Engineering Data, 2005, 50 (2), 369.
12 Su F, Lu C, Kuo S C, et al. Energy Fuels, 2010, 24, 1441.
13 Zheng F, Tran D N, Busche B J, et al. Industrial & Engineering Chemistry Research, 2005, 44 (9), 3099.
14 Gil M, Tiscornia I, Iglesia O, et al. Chemical Engineering Journal, 2011, 175, 291.
15 Kong Y, Shen X D, Cui S. Materials China, 2016, 35 (8), 569 (in Chinese).
孔勇, 沈晓冬, 崔升. 中国材料进展, 2016, 35 (8), 569.
16 Kong Y, Zhang J Y, Shen X D. Journal of Functional Materials, 2019, 5 (50), 504 (in Chinese).
孔勇, 张嘉月, 沈晓冬. 功能材料, 2019, 5 (50), 504.
17 Wang X B, Luan Z Q, Li K, et al. Journal of Functional Materials, 2018, 32 (7), 2214 (in Chinese).
王馨博, 栾志强, 李凯, 等. 功能材料, 2018, 32 (7), 2214.
18 Feng J Z, Zhang C R, Feng J, et al. ACS Applied Materials and Interfaces, 2011, 3 (12), 4796.
19 Dorcheh A S, Abbasi M. Journal of Materials Processing Technology, 2008, 199 (1-3), 10.
20 Gurav J L, Rao A V, Nadargi D, et al. Journal of Materials Science, 2010, 45 (2), 503.
21 Lee S C, Hsieh C C, Chen C H, et al. Aerosol and Air Quality Research, 2013, 13 (1), 360.
22 Kong Y, Jiang G D, Fan M H, et al. RSC Advances, 2014, 4 (82), 43448.
20120056-723 Schmidt M, Schwertfeger F. Journal of Non-Crystalline Solids, 1998, 225 (1), 364.
24 Yoda S, Ohshima S, Ikazaki F. Journal of Non-Crystalline Solids, 1998, 231 (1), 41.
25 Dorcheh A S, Abbasi M H. Journal of Materials Processing Technology, 2008, 199 (1-3), 10.
26 Gurav J L, Jung I K, Park H H, et al. Journal of Nanomaterials, 2010, 2020, 1.
27 Tursiloadi S, Imai H, Hirashima H. Journal of Non-Crystalline Solids, 2004, 350, 271.
28 Nakanishi K, Minakuchi H, Soga N, et al. Journal of Sol-Gel Science and Technology, 1997, 8 (1-3), 547.
29 Signoretto M, Oliva L, Pinna F, et al. Journal of Non-Crystalline Solids, 2001, 290 (2-3), 145.
30 Wang J X, Wang M M, Luo P, et al. Journal of Synthetic Crystals, 2018, 47 (1), 144 (in Chinese).
王军霞, 王敏敏, 罗萍, 等. 人工晶体学报, 2018, 47 (1), 144.
31 Omranpour H, Motahari S. Journal of Non-Crystalline Solids, 2013, 379 (4), 7.
32 Simtha S, Shajesh P, Kuamr S R, et al. Journal of Porous Material, 2007, 14 (1), 1.
33 Laudise R, Johnson J D. Journal of Non-Crystalline Solids, 1986, 79 (1-2), 155.
34 Jyoti L G, Jung I K, Park H H, et al. Journal of Nanomaterials, 2010, 2010, 1.
35 Yan Q H, Xia W D, Luo R J, et al. Materials Reports B: Research Papers, 2020, 34 (3), 12177 (in Chinese).
闫秋会, 夏卫东, 罗杰任, 等. 材料导报:研究篇, 2020, 34 (3), 12177.
36 Zhang X H, Zhao H L, He F, et al. Journal of University of Science and Technology Beijing, 2006, 28 (2), 157 (in Chinese).
张秀华, 赵海雷, 何方, 等.北京科技大学学报, 2006, 28 (2), 157.
37 Bi H J, Huang D M, He S, et al. Journal of Material Science and Engineering, 2014, 32 (2), 178 (in Chinese).
毕海江, 黄冬梅, 何松, 等. 材料科学与工程学报, 2014, 32 (2), 178.
38 Lyu Y N, Wang W, Qiu X L. Materials Reports B: Research Papers, 2011, 25 (9), 38 (in Chinese).
吕雅楠, 王维, 邱小林. 材料导报:研究篇, 2011, 25 (9), 38.
39 Uchida N, Ishiyama N, Kato Z. Journal of Material and Science, 1994, 29, 5188.
40 Gan L H, Zhang Y X, Chen L W, et al. Journal of TongJi University (Natural Science), 2003(9), 1131 (in Chinese).
甘礼华, 张宇星, 陈龙武, 等.同济大学学报(自然科学版), 2003(9), 1131.
41 Shen M M, Jiang X Y, Guo M, et al. Jounal of Sol-Gel Science and Technology, 2020, 93, 281.
42 Nazriati N, Setyawan H, Affandi S, et al. Journal of Non-Crystalline Solids, 2014, 400, 6.
43 Liu S W, Wei Q, Cui S P, et al. Journal of Sol-Gel Science and Techno-logy, 2016, 78, 60.
44 Amin N, Khattak S, Noor S, et al. Journal of Cleaner Production, 2016, 117, 207.
45 Hu W, Li M, Chen W, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 501, 83.
46 Ebrahimi A, Dahrazma B, Adelifard M. Journal of Porous Materials, 2020, 27 (4), 1219.
47 Muge S, Yilmaz S, Begum K. Water Air and Soil Pollution, 2018, 229 (10), 326.
48 Shi F, Liu J X, Song K, et al. Journal of Non-Crystalline Solids, 2010, 356, 2241.
49 Hwang S W, Jung H H, Hyun S H, et al. Journal of Sol-Gel Science and Technology, 2007, 41 (2), 139.
50 Lee Y R, Thet S J, Zhang S Q, et al. Chemical Engineering Journal, 2017, 317, 821.
51 Cheng Y, Xia M, Luo F, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 490, 200.
52 Bora Y, Nilay G. Journal of Engineering Sciences, 2019, 25 (7), 907.
53 Xie Q, Zhang X L, Li L T, et al. New Carbon Materials, 2005, 20 (2), 183 (in Chinese).
解强, 张香兰, 李兰廷, 等. 新型炭材, 2005, 20 (2), 183.
54 Zelenák V, Badanicová M, Halamová D, et al. Chemical Engineering Journal, 2008, 144 (2), 336.
55 Cui S, Cheng W W, Shen X D, et al. Energy and Environmental Science, 2011, 4 (6), 2070.
56 He F, Cheng J, Wu J Y. Journal of Sol-Gel Science and Technology, 2019, 90 (2), 323.
57 Kong Y, Shen X, Cui S. Microporous and Mesoporous Materials, 2016, 236, 269.
58 Linneen N N, Pfeffer R, Lin Y S. Microporous and Mesoporous Materials, 2013, 176 (4), 123.
59 Wang Z, Dai Z, Wu J J, et al. Advanced Materials, 2013, 25 (32), 4494.
60 Linneen N N, Pfeffer R, Lin Y S. Industrial and Engineering Chemistry Research, 2013, 52 (41), 14671.
61 Long C X, Ding Q, Guan J Y. Ion Exchange and Adsorption, 2012, 28 (3), 211 (in Chinese).
龙春霞, 丁琴, 关建郁. 离子交换与吸附, 2012, 28 (3), 211.
62 Zhao C W, Guo Y F, Li W L, et al. Chemical Engineering Journal, 2017, 312, 50.
63 Fang Q X, Huang W Q, Wang H N. Materials Research Express, 2020, 7 (3), 2053.
64 Linneen N N, Pfeffer R, Lin Y S. Chemical Engineering Journal, 2014, 254, 190.
65 Wörmeyer K, Smirnova I. Chemical Engineering Journal, 2013, 225 (6), 350.
66 Cui S, Yu S W, Lin B L, et al. Journal of Porous Materials, 2017, 24, 455.
67 Kong Y, Shen X D, Cui S, et al. Applied Energy, 2015, 147, 308.
68 He L L, Fan M H, Dutcher B, et al. Chemical Engineering Journal, 2012, 189-190, 13.
69 Shao Z D, Cheng X, Zheng Y M. Journal of Colloid And Interface Science, 2018, 530, 412.
70 Guo S T, Wu H J, Yang L X, et al. Materials Reports B: Research Papers, 2017, 31 (2), 38 (in Chinese).
郭思彤, 吴会军, 杨丽修, 等. 材料导报:研究篇, 2017, 31 (2), 38.
71 Kong Y, Shen X D, Fan M H, et al. Chemical Engineering Journal, 2016, 283, 1059.
72 Kong Y, Shen X D, Cui S, et al. International Journal of Global Warming, 2017, 12 (2), 228.
73 Kong Y, Jiang G D, Fan M H, et al. Chemical Communications, 2014, 50 (81), 12158.
74 Begag R, Krutka H, Dong W T, et al. Greenhouse Gases Science & Technology, 2013, 3 (1), 30.
[1] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[2] 闫时雨, 纪文涛, 谢克强, 袁晓磊. 宽禁带半导体β-Ga2O3单晶制备工艺研究进展[J]. 材料导报, 2022, 36(Z1): 21050183-6.
[3] 陈杰, 樊正阳, 毛华明, 尹俊刚, 李耀, 代伟, 杨宏伟. 镀银铜纳米颗粒的制备与应用研究进展[J]. 材料导报, 2022, 36(Z1): 21090201-4.
[4] 李燕, 陈梅芹, 乔艳辉, 康新平. 废白土-花生壳生物炭吸附剂的制备及对Pb(Ⅱ) 的吸附[J]. 材料导报, 2022, 36(6): 20110276-6.
[5] 谢鸿翔, 项厚政, 马瑞奇, 陈雨雪, 刘国忠, 姚思远, 冒爱琴. 高熵陶瓷材料的研究进展[J]. 材料导报, 2022, 36(6): 20070201-8.
[6] 姚亿文, 杨飞跃, 赵爽, 陈国兵, 李昆锋, 杨自春. 新型陶瓷涂层的制备、结构调控及应用研究进展[J]. 材料导报, 2022, 36(23): 21010029-7.
[7] 平托, 张益帆, 宣吴静, 张育新. 空间高吸收率消杂光涂层材料的研究与应用进展[J]. 材料导报, 2022, 36(22): 22040298-12.
[8] 朋许杰, 李建军, 曹瑞昌, 戎鑫, 李梦, 刘银. 磁性壳聚糖吸附剂的季铵盐改性及磷吸附性能[J]. 材料导报, 2022, 36(21): 21060259-7.
[9] 肖维新, 袁静, 严开祺, 张敬杰. 生物聚合物气凝胶的制备与应用研究进展[J]. 材料导报, 2022, 36(20): 21030322-10.
[10] 郑敏, 杨瑾, 张华. 多孔金属材料的制备及应用研究进展[J]. 材料导报, 2022, 36(18): 20110092-16.
[11] 师晓凤, 马应霞, 李鑫, 康小雅, 李晓华, 杨海军. 静电纺聚丙烯腈基纳米纤维对重金属离子吸附性能的研究进展[J]. 材料导报, 2022, 36(18): 20090131-9.
[12] 姜超, 华楚侨, 温变英. MOFs基核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2022, 36(16): 21030206-10.
[13] 纪铭悦, 田晓, 刘昕瑀, 田璐, 杨艳春, 塔娜. 新型La-Mg-Ni系储氢合金相结构及其制备工艺研究进展[J]. 材料导报, 2022, 36(15): 21030222-10.
[14] 王世界, 尹艺程, 邱鑫, 康国卫, 刘新红, 贾全利, 张少伟. 超高温多孔陶瓷的制备、性能及应用研究进展[J]. 材料导报, 2022, 36(12): 20100045-8.
[15] 宋文琦, 霍文娟, 杨金腾, 罗晨, 訾帅, 刘玉坤, 历亚星, 钱立伟. 氨丙基咪唑离子液体修饰纤维素气凝胶吸附剂对刚果红的清除研究:高性能与吸附机理[J]. 材料导报, 2022, 36(12): 21030276-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed