Please wait a minute...
材料导报  2022, Vol. 36 Issue (21): 21060259-7    https://doi.org/10.11896/cldb.21060259
  无机非金属及其复合材料 |
磁性壳聚糖吸附剂的季铵盐改性及磷吸附性能
朋许杰1, 李建军1,2,*, 曹瑞昌1, 戎鑫1, 李梦1, 刘银2
1 安徽理工大学材料科学与工程学院,安徽 淮南 232001
2 安徽理工大学安徽省纳米碳基材料与环境健康国际联合研究中心,安徽 淮南 232001
Magnetic Chitosan Modified by Quaternary Ammonium Salt and Its Phosphorus Adsorption
PENG Xujie1, LI Jianjun1,2,*, CAO Ruichang1, RONG Xin1, LI Meng1, LIU Yin2
1 School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China
2 Anhui International Joint Research Center for Nano Carbon-based Materials and Environmental Health, Anhui University of Science and Technology, Huainan 232001, Anhui, China
下载:  全 文 ( PDF ) ( 5767KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为提升吸附剂的固-液分离效率及磷吸附选择性,以粉煤灰磁珠(CMS)为磁核,以甲基丙烯酰丙基三甲基氯化铵(MAPTAC)改性的壳聚糖(CS)为壳层材料,制备了磁性CMS/CS/MAPTAC吸附剂。利用热重分析、X射线衍射、振动样品磁强计、扫描电镜、红外光谱仪和X射线光电子能谱对CMS/CS/MAPTAC进行了系统表征。研究表明,CMS颗粒均匀分布于CS基体中,MAPTAC以化学键形式与CS结合。所得CMS/CS/MAPTAC具有16.8 emu/g的强磁性,因而可利用磁场实现高效固-液分离。磷吸附试验表明,CMS/CS经MAPTAC修饰后,磷吸附性能大幅提升。在pH=4.0,25 ℃条件下,其最大磷吸附容量可达50.7 mg/g。溶液pH、时间、浓度、温度和共存阴离子等因素对磷吸附性能具有显著影响。吸附动力学和等温线模拟表明,CMS/CS/MAPTAC的磷吸附过程符合准二级动力学模型和Langmuir等温吸附模型,以单分子层化学吸附为主。经过五次循环利用后,CMS/CS/MAPTAC仍保留60%以上的磷吸附性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朋许杰
李建军
曹瑞昌
戎鑫
李梦
刘银
关键词:  磁性吸附剂  除磷  粉煤灰磁珠  壳聚糖  季铵盐改性    
Abstract: To improve the solid-liquid separation efficiency and selective adsorption of phosphorus sorbent, magnetic CMS/CS/MAPTAC composites were prepared, using coal-fly-ash magnetic spheres (CMS) and chitosan (CS) modified by methacrylamido propyl trimethyl ammonium chloride (MAPTAC) as magnetic core and shell, respectively. Thermogravimetry analysis, X-ray diffraction, vibration sample magnetometer, scanning electron microscopy, infrared spectroscopy and X-ray photoelectron spectroscopy were employed to characterize the obtained CMS/CS/MAPTAC. It is shown that CMS is uniformly distributed in the CS matrix. MAPTAC is modified onto the surface of CS by chemical bonds. The CMS/CS/MAPTAC sample has strong magnetism up to 16.8 emu/g, which enables an efficient solid-liquid separation under an applied magnetic field. Phosphorus adsorption experiments indicate that the loading of MAPTAC on the surface of CMS/CS improves the phosphorus adsorption performance. The maximum phosphorus adsorption capacity of 50.7 mg/g was obtained under the conditions of pH=4.0 and 25 ℃. The reaction time, pH, phosphate concentration, temperature and coexisting anions have significant effects on the phosphorus adsorption. The adsorption kinetics and adsorption thermodynamics simulation suggests that the phosphorus adsorption of CMS/CS/MAPTAC conforms to the pseudo-second-order model and Langmui-iso-absorbing model. Thus, the adsorption should mainly belong to monolayer chemisorption. The CMS/CS/MAPTAC adsorbent can be recycled and reused multiple times. After 5 recycling, the phosphorus adsorption was still more than 60% of that initial sample.
Key words:  magnetic adsorbent    phosphorus removal    coal-fly-ash magnetic sphere    chitosan    quaternary ammonium salt modification
出版日期:  2022-11-10      发布日期:  2022-11-03
ZTFLH:  X703  
基金资助: 安徽省自然科学基金(1908085ME127);安徽理工大学环境友好材料与职业健康研究院研发专项基金(ALW2021YF11);安徽省2021年高等学校质量工程项目(2021cyxy031)
通讯作者:  * lijj3@aust.edu.cn   
作者简介:  朋许杰,安徽理工大学硕士研究生。主要从事磁性高分子吸附剂的制备及富营养化污水处理的应用研究。
李建军,安徽理工大学教授,中国煤炭学会碳中和专业技术委员会委员,中国硅酸盐学会固废与生态材料分会学术委员,安徽省硅酸盐学会理事,安徽理工大学固废资源化与生态功能材料团队首席专家。2010年毕业于北京航空航天大学材料物理与化学专业,获工学博士学位。2016—2017年在澳大利亚University of Wollongong国家超导与电子材料研究所访学。主要研究方向:煤基固废资源化、磁分离技术及水处理。承担国家级、省部级科研项目12项,承担横向项目5项。发表研究论文40余篇,其中SCI收录30余篇;授权国家发明专利9项,获省部级教学科研奖4项。
引用本文:    
朋许杰, 李建军, 曹瑞昌, 戎鑫, 李梦, 刘银. 磁性壳聚糖吸附剂的季铵盐改性及磷吸附性能[J]. 材料导报, 2022, 36(21): 21060259-7.
PENG Xujie, LI Jianjun, CAO Ruichang, RONG Xin, LI Meng, LIU Yin. Magnetic Chitosan Modified by Quaternary Ammonium Salt and Its Phosphorus Adsorption. Materials Reports, 2022, 36(21): 21060259-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060259  或          http://www.mater-rep.com/CN/Y2022/V36/I21/21060259
1 Wu Y, Luo J, Zhang Q, et al. Chemosphere, 2019, 226, 246.
2 Paul B, Bhattacharya S S, Gogoi N. Science of the Total Environment, 2021, 762, 143171.
3 Vinçon-Leite B, Casenave C. Science of the Total Environment, 2019, 651, 2985.
4 Jastrzab R, Nowak M, Zabiszak M, et al. Coordination Chemistry Reviews, 2021, 435, 213810.
5 Bi W, Li Y, Hu Y. Bioresource Technology, 2014, 166, 1.
6 Donatello S, Cheeseman C R. Waste Management, 2013, 33(11), 2328.
7 Adam C, Peplinski B, Michaelis M, et al. Waste Management, 2009, 29(3), 1122.
8 Zhao S, Xu W, Zhang W, et al. Bioresource Technology, 2021, 323, 124641.
9 Chen Z, Luo H, Rong H. International Journal of Biological Macromolecules, 2020, 164, 1183.
10 Jiang H, Chen P, Luo S, et al. Applied Surface Science, 2013, 284, 942.
11 Anirudhan T S, Rauf T A, Rejeena S R. Desalination, 2012, 285, 277.
12 Chen A Y, Cheng X, Huang R X, et al. Journal of Chemical Enginee-ring, 2008, 59(9), 2270(in Chinese).
陈爱燕, 程翔, 黄新瑞,等. 化工学报, 2008, 59(9), 2270.
13 Wang L, Wang J, He C, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 561, 236.
14 Vu M T, Chao H P, Van Trinh T, et al. Journal of Cleaner Production, 2018, 180, 560.
15 Józ'wiak T, Filipkowska U, Szymczyk P, et al. International Journal of Biological Macromolecules, 2017, 104, 1280.
16 Zhang Y, Zhao M, Cheng Q, et al. Chemosphere, 2021, 279, 130927.
17 Song J M, Zhang X, Gao Y R,et al. Journal of Chongqing Technology and Business University(Natural Science Edition), 2020,37(3),17(in Chinese).
宋俊梅,张昕,高玉荣. 重庆工商大学学报(自然科学版), 2020,37(3),17.
18 Liu J, Wan L, Zhang L, et al. Journal of Colloid and Interface Science, 2011, 364(2), 490.
19 Luo Y, Wu Y, Ma S, et al. Environmental Science and Pollution Research,2020, 28(15), 18727.
20 Blaha U, Sapkota B, Appel E, et al. Atmospheric Environment, 2008, 42(36), 8359.
21 Li J J, Dan H B, Xie W, et al. Chinese Journal of Inorganic Chemistry, 2018, 34(8), 1455 (in Chinese).
李建军, 但宏兵, 谢蔚, 等. 无机化学学报, 2018, 34(8), 1455.
22 Wu X F, Li J J, Zhu J B, et al. Materials Reports A:Review Papers, 2015, 29(12), 103 (in Chinese).
吴先锋, 李建军, 朱金波, 等. 材料导报:综述篇, 2015, 29(12), 103.
23 Tran H N, You S J, Hosseini Bandegharaei A, et al. Water Research, 2017, 120, 88.
24 Banu H T, Karthikeyan P, Meenakshi S. International Journal of Biological Macromolecules, 2019, 130, 573.
25 Banu H a T, Karthikeyan P, Vigneshwaran S, et al. International Journal of Biological Macromolecules, 2020, 154, 188.
26 Gamal A, Ibrahim A G, Eliwa E M, et al. International Journal of Biological Macromolecules, 2021, 183, 1283.
27 Hua C, Zhang R, Bai F, et al. Chinese Journal of Chemical Engineering, 2017, 25(2), 153.
28 Tsiourvas D, Tsetsekou A, Arkas M, et al. Journal of Materials Science: Materials in Medicine, 2011, 22(1), 85.
29 Fu C C, Tran H N, Chen X H, et al. Journal of Industrial and Enginee-ring Chemistry, 2020, 83, 235.
30 Li K, Li P, Cai J, et al. Chemosphere, 2016, 154, 310.
31 Wu Y, Zhang T, Zheng Z, et al. Materials Research Bulletin, 2010, 45(4), 513.
32 Xu J, Cao Z, Liu X, et al. Journal of Hazardous Materials, 2016, 317, 656.
33 Andreica B I, Cheng X, Marin L. European Polymer Journal, 2020, 139, 110016.
34 Sarkar A, Biswas S K, Pramanik P. Journal of Materials Chemistry, 2010, 20(21), 4417.
35 Blaney L M, Cinar S, Sengupta A K. Water Research, 2007, 41(7), 1603.
36 Lai L, Xie Q, Chi L, et al. Journal of Colloid and Interface Science, 2016, 465, 76.
37 Li D, Min H, Jiang X, et al. Journal of Colloid and Interface Science, 2013, 404, 42.
38 Cao D, Jin X, Gan L, et al. Chemosphere, 2016, 159, 23.
39 Chen C, Wang X. Industrial & Engineering Chemistry Research, 2006, 45(26), 9144.
40 Özacar M. Cement and Concrete Research, 2003, 33(10), 1583.
41 Ho Y S. Adsorption, 2004, 10(2), 151.
42 Anoop Krishnan K, Anirudhan T S. Journal of Hazardous Materials, 2002, 92(2), 161.
43 Webster A, Halling M D, Grant D M. Carbohydrate Research, 2007, 342(9), 1189.
44 Monteiro Jr O A C, Airoldi C. International Journal of Biological Macromolecules, 1999, 26(2), 119.
45 Bui T H, Lee W, Jeon S B, et al. Separation and Purification Technology, 2020, 248, 116989.
46 Aswin Kumar I, Viswanathan N. Journal of Chemical & Engineering Data, 2018, 63(1), 147.
[1] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[2] 闫星雨, 但年华, 陈一宁, 但卫华, 李正军. 胶原基复合止血材料的研究进展及展望[J]. 材料导报, 2023, 37(5): 21030008-9.
[3] 刘珊, 廖磊, 魏莉, 李炫妮, 曹磊, 王鑫. 壳聚糖交联腐殖酸凝胶球吸附渗滤液中重金属离子研究[J]. 材料导报, 2023, 37(3): 21040317-8.
[4] 周鑫, 关水, 孙长凯. 基于壳聚糖/黄原胶互穿网络的导电水凝胶支架制备及性能研究[J]. 材料导报, 2023, 37(18): 22030238-8.
[5] 任荣浩, 孙平, 王永光, 丁钊, 赵栋, 俞泽新. 壳聚糖在铝低压力化学机械抛光中的钝化作用及抛光行为研究[J]. 材料导报, 2023, 37(16): 22030222-6.
[6] 曾斌, 曾祥荣, 黄万抚. 钨冶炼除磷渣中浸出钼和钨研究[J]. 材料导报, 2023, 37(15): 21120218-5.
[7] 杨卫, 徐呈祥, 陈则胜, 聂正稳, 董兵海. 基于生物聚合物伤口敷料的研究及应用进展[J]. 材料导报, 2022, 36(Z1): 21100217-5.
[8] 郭生伟, 王鑫, 薛敏, 李丹, 王固霞. 声化学法制备巯基壳聚糖/黄芪油微胶囊[J]. 材料导报, 2022, 36(6): 21010096-5.
[9] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[10] 惠爱平, 马梦婷, 杨芳芳, 康玉茹, 王爱勤. 季铵化壳聚糖改性ZnO/凹凸棒石纳米复合材料及其抗菌性能[J]. 材料导报, 2022, 36(3): 21110131-7.
[11] 冯颖, 李齐雪, 邵娟, 张建伟, 董鑫, 张庆瑾. 基于壳聚糖的分子印迹技术研究及应用[J]. 材料导报, 2022, 36(17): 21040121-8.
[12] 宋学锋, 丁浩. LaCl3@Zeolite自支撑多孔吸附材料的制备及其同步脱氮除磷效果[J]. 材料导报, 2022, 36(14): 21040103-7.
[13] 薛丽媛, 黄锋林, 徐文晴. 负载球状Zn/Al-LDH的壳聚糖海绵的制备及微纤维去除性能研究[J]. 材料导报, 2021, 35(z2): 554-557.
[14] 刘珊, 廖磊, 蒋翠婷, 李炫妮, 曹磊, 赵春朋. 铝污泥负载水合氧化铁-壳聚糖吸附水中Ni(Ⅱ)的研究[J]. 材料导报, 2021, 35(Z1): 530-535.
[15] 冯燕霞, 李北罡. 磁性Y/CTS/FA复合吸附剂的制备及对直接湖蓝5B的吸附[J]. 材料导报, 2021, 35(6): 6028-6034.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed