Please wait a minute...
材料导报  2023, Vol. 37 Issue (15): 21120218-5    https://doi.org/10.11896/cldb.21120218
  金属与金属基复合材料 |
钨冶炼除磷渣中浸出钼和钨研究
曾斌1,2, 曾祥荣1, 黄万抚1,*
1 江西理工大学资源与环境工程学院,江西 赣州 341000
2 信丰华锐钨钼新材料有限公司,江西 赣州 341000
Study on Leaching Molybdenum and Tungsten Processes of Phosphorus Removal Slag from Tungsten Smelting
ZENG Bin1,2, ZENG Xiangrong1, HUANG Wanfu1,*
1 College of Resource and Environment Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
2 Xinfeng Huarui Tungsten and Molybdenum New Materials Co., Ltd., Ganzhou 341000, Jiangxi, China
下载:  全 文 ( PDF ) ( 4470KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钨冶炼除磷渣是重要的钼和钨二次资源。采用热压浸出法从钨冶炼除磷渣中浸出Mo和WO3,考察碳酸钠用量、氢氧化钠用量、浸出时间、浸出温度、液固比、搅拌速度对Mo和WO3浸出率的影响。研究结果显示,碳酸钠用量和氢氧化钠用量是影响Mo和WO3浸出率的关键因素,采用碳酸钠-氢氧化钠协同浸出,Mo和WO3的浸出率显著提高。确定较优试验条件为:碳酸钠的用量为理论用量的2.5倍,氢氧化钠用量为理论用量的0.15倍,浸出时间2 h,浸出温度188 ℃,浸出液固比3∶1,浸出搅拌速度80 r·min-1,此条件下,Mo和WO3浸出率分别为99.19%、99.11%。按优化条件进行工业试验,Mo浸出率大于98.50%,WO3浸出率大于98.40%,浸出渣中Mo含量小于0.16%,WO3含量小于0.20%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾斌
曾祥荣
黄万抚
关键词:  钨冶炼  除磷渣  碳酸钠-氢氧化钠协同浸出  浸出率    
Abstract: Phosphorus removal slag from tungsten smelting was an important recycling resource of Mo and WO3. A method of thermal pressure leaching with sodium carbonate and sodium hydroxide was proposed to leach Mo and WO3 from phosphorus removal slag from tungsten smelting. The results show that the synergistic leaching with sodium carbonate and sodium hydroxide, the leaching rate of Mo and WO3 was raised substantially. Effect of leaching agent dosage of sodium carbonate and sodium hydroxide, leaching time, leaching temperature, leaching liquid to solid rate, leaching stirring speed on the leaching rate of Mo and WO3 were investigated. The optimum processes conditions are as follow: 250% theoretical dosage of sodium carbonate sodium carbonate, 15% theoretical dosage of sodium hydroxide, leaching time 2 h, leaching temperature 188 ℃, leaching liquid to solid rate 3∶1, leaching stirring speed 80 r/min, the leaching rate of Mo and WO3 were reached 99.19%, 99.11%, respectively. Under the same optimum processes conditions, an industrial leaching test of phosphorus removal slag was proposed, the leaching rate of Mo and WO3 were higher than 98.50%, 98.40%, respectively, and the content of Mo and WO3 on leaching slag were less than 0.16%, 0.20%, respectively.
Key words:  tungsten smelting    phosphorus removal slag    synergistic leaching with sodium carbonate and sodium hydroxide    leaching rate
出版日期:  2023-08-10      发布日期:  2023-08-07
ZTFLH:  TF84  
基金资助: 国家自然科学基金(51864017)
通讯作者:  * 黄万抚,江西理工大学资源与环境工程学院教授、博士研究生导师。1999年毕业于北京科技大学,获博士学位。长期致力于金属矿产资源综合利用、固体废弃物资源化等领域的研究和实践工作,取得了丰硕的成果。获国家科技进步二等奖1项、中国优秀专利奖1项。先后主持4项国家自然科学基金项目、1项国家十二五科技支撑计划项目、1项国家973专项项目、1项江西省协同创新专项项目以及70余项企业横向课题。担任中国有色金属工业协会专家委员会委员、中国有色金属学会选矿学术委员会委员、中国金属学会选矿技术委员会委员、中国膜工业协会会员。享受国务院政府特殊津贴专家,全国优秀教授,江西省突出贡献人才,江西省主要学科学术和技术带头人。发表高质量论文100余篇。Sim2008@sina.com   
作者简介:  曾斌,高级工程师,2014年09月于江西理工大学获得工学硕士学位,现为江西理工大学资源与环境工程学院在读博士研究生,在黄万抚教授的指导下,从事钨钼废料资源综合利用研究工作。
引用本文:    
曾斌, 曾祥荣, 黄万抚. 钨冶炼除磷渣中浸出钼和钨研究[J]. 材料导报, 2023, 37(15): 21120218-5.
ZENG Bin, ZENG Xiangrong, HUANG Wanfu. Study on Leaching Molybdenum and Tungsten Processes of Phosphorus Removal Slag from Tungsten Smelting. Materials Reports, 2023, 37(15): 21120218-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120218  或          http://www.mater-rep.com/CN/Y2023/V37/I15/21120218
1 Zhang W J, Li J T, Zhao Z W, et al. Hydrometallurgy, 2015, 155, 1.
2 Cao F, Yang H P, Wang W, et al. Conservation and Utilization of Mineral Resources, 2018(2), 145(in Chinese).
曹飞, 杨卉芃, 王威, 等. 矿产综合利用, 2018(2), 145.
3 Zhao Z W. Tungsten metallurgy fundamentals and applications, Tsinghua University Press, China, 2013, pp. 82(in Chinese).
赵中伟. 钨冶炼的理论与应用, 清华大学出版社, 2013, pp. 82.
4 Li T T, Zhong X X, Zhang W, et al. Metal Mine, 2017(10), 128(in Chinese).
李停停, 钟祥熙, 张威, 等. 金属矿山, 2017(10), 128.
5 Li H G, Yang J G, Li K. Tungsten metallurgy, Central South University Press, China, 2010, pp. 212(in Chinese).
李洪桂, 羊建高, 李昆. 钨冶金学, 中南大学出版社, 2010, pp. 212.
6 Zhao Z W, Cao C F, Chen X Y, et al. Hydrometallurgy, 2011, 108, 229.
7 Yang Y, Xie B Y, Wang R X, et al. Hydrometallurgy, 2016, 164, 97.
8 Lang Z L, Guan W, Wu Z J, et al. Computational and Theoritial Che-mistry, 2012, 999, 66.
9 Song Y H, Dai Y R, Hu Q, et al. Chemosphere, 2014, 101, 41.
10 Zhang W G, Zhao Z W, Chen X Y. Hydrometallurgy, 2013, 139, 111.
11 He G X, He L H, Zhao Z W, et al. Transactions of Nonferrous Metals Society of China , 2013, 23, 3440.
12 吴权芬, 杨运光, 廉亚军, 等. 中国专利, CN103451434B, 2016.
13 Zhao Z, Li J, Wang S, et al. Hydrometallurgy. 2011, 108, 152.
14 Zhao Z, Liang T, Li H. International Journal Refractory Metals and Hard Material, 2011, 29, 289.
15 Srinivas K, Sreenivas T, Natarajan R, et al. Hydrometallurgy, 2000, 58, 43.
16 He G X, He L H, Cao C F, et al. Materials Science and Engineering of Powder Metallurgy, 2013, 18(3), 368(in Chinese).
何桂香, 何利华, 曹才放, 等. 粉末冶金材料科学与工程, 2013, 18(3), 368.
17 Martins J P. Hydrometallurgy, 1997, 46, 191.
18 Martins J P. Hydrometallurgy, 1996, 42, 221.
19 Ajiboye E A, Panda P K, Adebayo A O, et al. Hydrometallurgy, 2019, 188, 161.
20 Choi I H, Kim H R, Moon G, et al. Hydrometallurgy, 2018, 175, 292.
21 Su Q F, Miao J F, Li H R, et al. Hydrometallurgy, 2018, 181, 230.
22 Choi I H, Moon G, Lee JY, et al. Journal of Cleaner Production, 2018, 6, 196.
23 Zhao Z, Guo M, Zhang M. International Journal Refractory Metals and Hard Material, 2015, 286, 402.
24 Zhang Y Q, Cheng X H. Inorganic Chemicals Industry, 2005, 37(12), 20(in Chinese).
张永强, 陈锡宏. 钼酸铵氧化钼复盐溶解性能研究. 无机盐工业, 2005, 37(12), 20.
25 Liang H Q, Yu S H. Shanghai Metals, 1986, 7(1), 1(in Chinese).
梁琥琪, 余守慧. 上海金属, 1986, 7(1), 1.
26 Xia W T, Zhao Z W, Li H G. Transactions of Nonferrous Metals Society of China, 2007, 17, 622.
27 Gong D D, Zhou K G, Chen W, et al. Chinese Journal of Rare Metals, 2020, 44(1), 72(in Chinese).
龚丹丹, 周康根, 陈伟, 等. 稀有金属, 2020, 44(1), 72.
28 Ma Z L, Zhang L C, Li J T, et al. Nonferrous Metals Science and Engineering, 2020, 11(5), 25(in Chinese).
马泽龙, 张凌晨, 李江涛, 等. 有色金属科学与工程, 2020, 11(5), 25.
[1] 李亮星, 朱志城, 贾孟熹, 黄茜琳. 硬质合金废料电解回收钨及W(Ⅵ)在熔盐中的电化学行为[J]. 材料导报, 2022, 36(Z1): 22010043-6.
[2] 单国雷, 王龙, 孙元, 陈振斌, 李晓明, 张洪宇, 裴逍遥. 镍基单晶高温合金资源中关键金属的浸出行为研究[J]. 材料导报, 2021, 35(10): 10134-10140.
[3] 朱军, 康敏, 李维亮, 王斌, 齐建云, 李姝, 刘丹阳. 粘土钒矿钡盐焙烧-酸浸提钒工艺研究[J]. 材料导报, 2020, 34(24): 24061-24067.
[4] 陈文娟, 龚先政, 高峰, 刘宇, 孙博学, 李小青, 王志宏. 四川氟碳铈矿生产氧化钕的环境影响分析[J]. 材料导报, 2020, 34(Z2): 315-318.
[5] 朱军, 李姝, 王斌, 张驰, 李冬, 康敏. 钒氮合金制备过程温度场模拟[J]. 材料导报, 2020, 34(22): 22100-22104.
[6] 刘欢, 华中胜, 何几文, 唐泽韬, 张伟伟, 吕辉鸿. 废弃氧化铟锡中铟的回收技术综述[J]. 《材料导报》期刊社, 2018, 32(11): 1916-1923.
[7] 王慧华, 徐英君, 蒋坤, 葛彬, 屈天鹏, 王德永. 外电场作用下熔渣对MgO-C耐火材料的侵蚀行为*[J]. 《材料导报》期刊社, 2017, 31(20): 96-100.
[8] 李亮星, 王涛胜, 黄茜琳, 黄金堤. 熔盐电解法制备铝钪中间合金研究进展[J]. 材料导报, 2018, 32(21): 3768-3773.
[9] 焦丽娜, 刘晓梅, 熊富豪, 陈光耀, 豆志河, 鲁雄刚, 李重河. 钛废料脱氧工艺研究现状及进展[J]. 材料导报, 2020, 34(13): 13036-13043.
[10] 邱玺, 高士鑫, 李权, 李垣明, 李文杰, 辛勇. 热管反应堆用钼铼合金的研究进展[J]. 材料导报, 2023, 37(2): 21020011-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed