Please wait a minute...
材料导报  2020, Vol. 34 Issue (22): 22100-22104    https://doi.org/10.11896/cldb.19070261
  金属与金属基复合材料 |
钒氮合金制备过程温度场模拟
朱军1,2, 李姝1, 王斌1,2, 张驰1, 李冬1, 康敏1
1 西安建筑科技大学冶金工程学院,西安 710055
2 陕西省先进储能与钒新材料工程技术研究中心,安康 725000
Temperature Field Simulation of Vanadium-Nitrogen Alloy Preparation Process
ZHU Jun1,2, LI Shu1, Wang Bin1,2, ZHANG Chi1, LI Dong1, KANG Min1
1 School of Metallurgy Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 Shaanxi Advanced Energy Storage and Vanadium New Material Engineering Technology Research Center, Ankang 725000, China
下载:  全 文 ( PDF ) ( 3645KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 钒氮合金在双推板窑内的制备过程是一步氮化还原与传热过程,生产周期较长,能耗较高。为了有效地降低生产能耗,首次对推板窑生产氮化钒过程进行了温度场模拟尝试,这对优化设备具有一定的指导作用。本工作通过对双推板窑窑腔建立三维传热模型,采用ANSYS Workbench仿真平台对制备钒氮合金的典型加热段进行数值模拟,获得了不同加热段料球切片的温度场分布。通过对模拟结果进行验证,进一步采取提高升温速率,优化推板窑运行速度,达到缩短生产周期的目的。优化结果显示,在原有热工制度不变的基础上,优化后料球通过主窑的时间缩短了108 min;优化后产量在原工况基础上增加了6.45%;优化后的吨耗电量降低到了优化前的93.94%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱军
李姝
王斌
张驰
李冬
康敏
关键词:  双推板窑  钒氮合金  数值模拟  温度场    
Abstract: The preparation process of vanadium nitrogen was a one-step nitriding reduction and heat transfer process in double pusher kiln, which was a long production cycle and high energy consumption process. In order to reduce energy consumption effectively, the temperature field simulation of vanadium-nitride production in push plate kiln was made for the first time, which has a certain guiding effect on the optimization equipment. A three-dimensional heat transfer model of double pusher kiln's chamber was established, and take the ANSYS Workbench as a platform to si-mulate the typical heating section of vanadium nitrogen, then the temperature field distribution of vanadium nitrogen in different heating sections was obtained. By validating the simulation results, some measures were taken to increase the heating rate and optimization the pusher kiln speed, further shorter production cycle. The optimization results show that, the speed of the material ball through the main kiln decreased 108 min, production at the original condition of foundation can be increased by 6.45%, the amount of power consumption for tons reduced to 93.95% than before.
Key words:  double pusher kiln    vanadium nitrogen    numerical simulation    temperature field
               出版日期:  2020-11-25      发布日期:  2020-12-02
ZTFLH:  TF841.3  
  TF-9  
基金资助: 陕西省教育厅产业化项目(16JF014)
通讯作者:  13759906260@126.com   
作者简介:  朱军,西安建筑科技大学,博士,教授。2012年毕业于西安建筑科技大学冶金工程学院,材料加工工程博士专业学位。主要从事石煤提钒及钒材料制备研究、冶金过程模拟与优化。共发表学术论文50余篇,出版专著3部。李姝,硕士研究生,就读于西安建筑科技大学冶金工程学院,主要从事钒材料制备研究。
引用本文:    
朱军, 李姝, 王斌, 张驰, 李冬, 康敏. 钒氮合金制备过程温度场模拟[J]. 材料导报, 2020, 34(22): 22100-22104.
ZHU Jun, LI Shu, Wang Bin, ZHANG Chi, LI Dong, KANG Min. Temperature Field Simulation of Vanadium-Nitrogen Alloy Preparation Process. Materials Reports, 2020, 34(22): 22100-22104.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070261  或          http://www.mater-rep.com/CN/Y2020/V34/I22/22100
1 Zhang S P. Advanced Materials Research, 2012, 557-559, 240.2 Chi G Y, Liu K Z, Liang X W, et al. Steelmaking,2009, 25(3),53 (in Chinese).迟桂友, 刘克忠, 梁新维, 等. 炼钢, 2009, 25(3), 53.3 Li H Z, Tong W P, Cui J J, et al. Materials Science and Engineering A, 2016, 662, 356.4 Mackenzie M, Craven A J, Collins C L. Scripta Materialia, 2006, 54(1), 1.5 Downing J H, Merkert R F. U.S.patent, US 3334992 A, 1967.6 孙朝晖, 周家琮, 谢屯良,等. 中国专利, CN1422800, 2003.7 Yu S S,Fu N X, Gao F, Sui Z H.J. Journal of Materials Science & Technology,2007,23(l),43.8 Zhu J,Zhang C,Liu X Y, et al. Nonferrous Metals Engineering,2017,7(5),31(in Chinese).朱军,张驰,刘新运,等.有色金属工程,2017,7(5),31.9 西峡县中嘉合金材料有限公司.中国专利,CN201510106114.9,2015.10 Zhou P, Zhou N J, Jiang A H, et al. Principle of transfer process and its numerical simulation, Central South University Press, China, 2006(in Chinese).周萍, 周乃君, 蒋爱华, 等. 传递过程原理及其数值仿真, 中南大学出版社, 2006.11 Wang F Q.Study on numerical simulation and optimization of temperature field in nitride-production furnace. Master's Thesis, Central South University, China, 2007(in Chinese).王富强. 氮化制品烧成窑内温度场的数值仿真及优化研究.硕士学位论文,中南大学,2007.12 Yao Y Y, Pan J X, Liu S, et al. Heat Treatment of Metals,2017,42(3),184(in Chinese).姚元媛,潘景新,刘帅,等.金属热处理,2017,42(3),184.13 Duan Z Z. Ansys fluent analysis and engineering example, Electronic Industry Press, China, 2015(in Chinese).段中喆. 流体分析与工程实例, 电子工业出版社, 2015.
[1] 朱康杰, 钱春香, 李敏, 苏依林. 微生物自修复混凝土中微胶囊修复剂尺寸及掺量对修复剂释放率的影响[J]. 材料导报, 2020, 34(Z2): 212-216.
[2] 刘轶伦. 高速铁路Cu-Cr-Zr合金承导线对连续挤压工艺的适应性[J]. 材料导报, 2020, 34(8): 8131-8135.
[3] 徐国财, 黎军顽, 左鹏鹏, 吴晓春. 热-机械载荷下H13钢力学响应行为实验和数值分析[J]. 材料导报, 2020, 34(8): 8159-8164.
[4] 周蕊, 刘众旺, 张建国, 刘兵飞, 杜春志. 基于DPC-CZM混合模型的金属粉末压坯裂纹三维数值模拟[J]. 材料导报, 2020, 34(6): 6151-6155.
[5] 何秋霖, 石少卿, 崔廉明, 孙建虎, 陈自鹏. 轻质材料构筑的蜂窝防护结构抗爆性能试验与数值模拟研究[J]. 材料导报, 2020, 34(24): 24023-24028.
[6] 赵颖, 裴久杨, 郭丽丽, 运新兵, 马怀超, 李冰. 宽厚比对双杆连续挤压6063铝合金焊合质量的影响[J]. 材料导报, 2020, 34(24): 24114-24120.
[7] 乔及森, 芮正雷, 王磊, 陈振文. 基于组合热源模型焊剂片约束电弧焊T形接头温度场及应力场计算与试验研究[J]. 材料导报, 2020, 34(22): 22142-22147.
[8] 张淞凯, 袁鸿. 山棕纤维/天然乳胶复合材料床垫的横观各向同性参数研究[J]. 材料导报, 2020, 34(22): 22154-22161.
[9] 刘杭, 李明伟, 王鹏飞, 胡志涛, 尹华伟. 二维圆周平动法ADP单晶生长流动与传质数值模拟[J]. 材料导报, 2020, 34(20): 20022-20027.
[10] 方姚, 张勇, 冉真真. 中深层地热井固井导热水泥导热系数研究[J]. 材料导报, 2020, 34(20): 20028-20033.
[11] 郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
[12] 赖家美, 阮金琦, 王森, 黄志超. 缝合泡沫复合材料弯曲性能研究[J]. 材料导报, 2020, 34(18): 18165-18170.
[13] 余为, 张雄博. 考虑界面的空心玻璃微珠/环氧树脂复合泡沫材料的力学性能仿真分析[J]. 材料导报, 2020, 34(16): 16161-16166.
[14] 权国政, 施瑞菊, 刘乔, 赵江, 周杰, 王月乔. 电弧熔丝单层单道积材残余应力模拟分析及锤击消除研究[J]. 材料导报, 2020, 34(14): 14154-14160.
[15] 郑晨, 白晓宇, 张明义, 王海刚. 玻璃纤维增强聚合物锚杆在地下结构抗浮工程中的研究进展[J]. 材料导报, 2020, 34(13): 13194-13020.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed