Please wait a minute...
材料导报  2020, Vol. 34 Issue (24): 24023-24028    https://doi.org/10.11896/cldb.19120249
  无机非金属及其复合材料 |
轻质材料构筑的蜂窝防护结构抗爆性能试验与数值模拟研究
何秋霖, 石少卿, 崔廉明, 孙建虎, 陈自鹏
陆军勤务学院军事设施系,重庆401331
Research on Blast-resistant Performance and Numerical Simulation of Honeycomb Protective Structure Constructed of Lightweight Materials
HE Qiulin, SHI Shaoqing, CUI Lianming, SUN Jianhu, CHEN Zipeng
Department of Military Facility, Army Logistics University of PLA, Chongqing 401331, China
下载:  全 文 ( PDF ) ( 8019KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为克服永久性防爆墙构筑速度慢、土工作业量大、撤收难的问题,提出了一种轻质材料构筑的新型蜂窝防护结构。通过爆炸试验研究该结构的抗爆性能和防护效果。采用压力传感器,获得了该结构前后不同距离的压力波形和超压峰值。使用LS-DYNA软件对试验过程进行了数值模拟,探讨了爆炸冲击波作用于蜂窝防护结构的超压分布区域和峰值变化,并与试验结果进行对比分析。数值模拟结果与试验各测点的冲击波超压值变化曲线、超压峰值基本一致。对试验和数值计算结果的分析发现:从迎爆面测点1到背爆面测点2超压峰值降低90%以上,从背爆面测点2到背爆面测点3超压峰值降低60%以上,表明该防护结构能有效衰减爆炸冲击波能量,保护结构后方人员不受伤害。另外,该防护结构在冲击波作用下,蜂窝胞元上部连接处为结构薄弱环节,易发生破坏,通过增强缝线强度或增加缝线密度可以提升该防护结构整体抗冲击强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何秋霖
石少卿
崔廉明
孙建虎
陈自鹏
关键词:  轻质材料  蜂窝防护结构  爆炸试验  超压峰值  数值模拟    
Abstract: In order to overcome the weakness of the permanent blast-resistant structure, such as the low efficiency, large construction and hard dismantlement, a honeycomb protective structure constructed of lightweight materials is developed. Experiments have been conducted to analyse the blast-resistant performance and the protective effect. With the pressure sensor, the pressure wave and the maximum value of the overpressure can be depicted in front of or behind the structure. By using the LS-DYNA software to simulate the experimental process and comparing the experimental results with the simulation results, the vibration and distribution of the overpressure which is induced by the blast wave towards the honeycomb protective structure, have been demonstrated. The simulation results show good consistency with the history curves and the maximum values of the overpressure from different experimental points. By analysing the experimental data and the simulation results, it shows that: from the point No.1 in the front of the surface to the point No.2 behind the surface, the maximum of the overpressure has been decreased over 90%. From the point No.2 behind the surface to the point No.3 behind the surface, the maximum of the overpressure has been decreased over 60%. And all these results indicate that the protective structure has the capability in damping the energy effectively, protecting the people behind the structure. Moreover, the connection in the upper part of the honeycomb unit, which is the weak point, will be damaged when the structure is under the blasting wave. Towards this part, increasing the intensity or the density of the suture can improve the blast-resistance performance of the whole protective structure.
Key words:  lightweight materials    honeycomb protective structure    explosion test    maximum of the overpressure    numerical simulation
               出版日期:  2020-12-25      发布日期:  2020-12-24
ZTFLH:  O383+.1  
基金资助: 军队科研项目(x2011026);重庆市高校优秀成果转化项目(kjzh7138);重庆市自然科学基金(cstc2019jcyj-msxmX0215)
通讯作者:  shishaoqing@sohu.com   
作者简介:  何秋霖,男,目前就读于陆军勤务学院军事设施系土木工程专业,博士研究生,主要从事防灾减灾工程和防护工程的研究。
石少卿,男,陆军勤务学院教授、博士研究生导师、国家百千万人才、国家有突出贡献中青年专家,军队高层次学科拔尖人才,享受政府特殊津贴。主要从事防灾减灾工程及防护工程的教学科研工作,主责国家科技支撑计划课题、国家自然基金、军队重点科研课题10多项,近五年发表学术论文30余篇,其中被SCI(EI)收录10余篇。培养研究生15名,已毕业博士7名、硕士6名,获国家科技进步二等奖1项,军队科技进步一等奖2项、二等奖5项,重庆市自然科学奖二等奖1项。
引用本文:    
何秋霖, 石少卿, 崔廉明, 孙建虎, 陈自鹏. 轻质材料构筑的蜂窝防护结构抗爆性能试验与数值模拟研究[J]. 材料导报, 2020, 34(24): 24023-24028.
HE Qiulin, SHI Shaoqing, CUI Lianming, SUN Jianhu, CHEN Zipeng. Research on Blast-resistant Performance and Numerical Simulation of Honeycomb Protective Structure Constructed of Lightweight Materials. Materials Reports, 2020, 34(24): 24023-24028.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120249  或          http://www.mater-rep.com/CN/Y2020/V34/I24/24023
1 Fu Z M, Huang J Y, Zang N. Fire Science and Technology, 2009, 28(6), 390(in Chinese).
傅智敏, 黄金印, 臧娜. 消防科学与技术, 2009, 28(6), 390.
2 Zineddin M Z. Behavior of structural concrete slabs under localized impact. Ph.D. Thesis, The Pennsylvania University, USA, 2002.
3 Jacob N,Yuen C Y,et al.International Journal of Impact Engineering, 2004, 30(8-9), 1179.
4 Jaconto A C,Ambrosini R D.International Journal of Impact Engineering, 2001, 25(10), 927.
5 Lungdon G S, Yuen S C K.International Journal of Impact Engineering, 2005, 31(1), 55.
6 Shi S Q, Zhang X J, Yin P. Underground Space,2003(1), 66 (in Chinese).
石少卿, 张湘冀, 尹平. 地下空间, 2003(1), 66.
7 Mu C M, Ren H Q, Li Y C, et al. Mechanics in Engineering, 2009, 31(5), 35 (in Chinese).
穆朝民, 任辉启, 李永池, 等. 力学与实践, 2009, 31(5), 35.
8 He H C, Tang D G, Chen X X, et al.Building Technology Development, 2002(8), 3(in Chinese).
贺虎成, 唐德高, 陈向欣,等. 建筑技术开发, 2002(8), 3.
9 时党勇, 李裕春, 张胜民. 基于ANSYS/LS-DYNA8.1进行显示动力分析, 清华大学出版社,2005.
10 Yan G J, Zhou M A, Yu L, et al. Mining Technology, 2011, 11(5), 89(in Chinese).
严国建, 周明安, 余轮, 等. 采矿技术, 2011, 11(5), 89.
11 Hou J L, Jiang J W, Men J B, et al. Transactions of Beijing Institute of Technology, 2013, 33(6), 556(in Chinese).
侯俊亮, 蒋建伟, 门建兵, 等. 北京理工大学学报, 2013, 33(6), 556.
12 Gao X N, Wu Y J. Chinese Journal of Explosives & Propellants, 2015, 38(3), 32(in Chinese).
高轩能, 吴彦捷. 火炸药学报, 2015,38(3), 32.
[1] 朱康杰, 钱春香, 李敏, 苏依林. 微生物自修复混凝土中微胶囊修复剂尺寸及掺量对修复剂释放率的影响[J]. 材料导报, 2020, 34(Z2): 212-216.
[2] 刘轶伦. 高速铁路Cu-Cr-Zr合金承导线对连续挤压工艺的适应性[J]. 材料导报, 2020, 34(8): 8131-8135.
[3] 徐国财, 黎军顽, 左鹏鹏, 吴晓春. 热-机械载荷下H13钢力学响应行为实验和数值分析[J]. 材料导报, 2020, 34(8): 8159-8164.
[4] 周蕊, 刘众旺, 张建国, 刘兵飞, 杜春志. 基于DPC-CZM混合模型的金属粉末压坯裂纹三维数值模拟[J]. 材料导报, 2020, 34(6): 6151-6155.
[5] 赵颖, 裴久杨, 郭丽丽, 运新兵, 马怀超, 李冰. 宽厚比对双杆连续挤压6063铝合金焊合质量的影响[J]. 材料导报, 2020, 34(24): 24114-24120.
[6] 朱军, 李姝, 王斌, 张驰, 李冬, 康敏. 钒氮合金制备过程温度场模拟[J]. 材料导报, 2020, 34(22): 22100-22104.
[7] 张淞凯, 袁鸿. 山棕纤维/天然乳胶复合材料床垫的横观各向同性参数研究[J]. 材料导报, 2020, 34(22): 22154-22161.
[8] 刘杭, 李明伟, 王鹏飞, 胡志涛, 尹华伟. 二维圆周平动法ADP单晶生长流动与传质数值模拟[J]. 材料导报, 2020, 34(20): 20022-20027.
[9] 方姚, 张勇, 冉真真. 中深层地热井固井导热水泥导热系数研究[J]. 材料导报, 2020, 34(20): 20028-20033.
[10] 郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
[11] 赖家美, 阮金琦, 王森, 黄志超. 缝合泡沫复合材料弯曲性能研究[J]. 材料导报, 2020, 34(18): 18165-18170.
[12] 余为, 张雄博. 考虑界面的空心玻璃微珠/环氧树脂复合泡沫材料的力学性能仿真分析[J]. 材料导报, 2020, 34(16): 16161-16166.
[13] 权国政, 施瑞菊, 刘乔, 赵江, 周杰, 王月乔. 电弧熔丝单层单道积材残余应力模拟分析及锤击消除研究[J]. 材料导报, 2020, 34(14): 14154-14160.
[14] 郑晨, 白晓宇, 张明义, 王海刚. 玻璃纤维增强聚合物锚杆在地下结构抗浮工程中的研究进展[J]. 材料导报, 2020, 34(13): 13194-13020.
[15] 余雷, 王辉, 单兵, 姚炜峰, 唐姝文, 张俊, 陈业高. 低雾化气压对喷射成形雾化过程的影响[J]. 材料导报, 2019, 33(Z2): 463-467.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed