Please wait a minute...
材料导报  2020, Vol. 34 Issue (8): 8159-8164    https://doi.org/10.11896/cldb.19040076
  金属及金属基复合材料 |
热-机械载荷下H13钢力学响应行为实验和数值分析
徐国财1,2, 黎军顽1,2, 左鹏鹏1,2, 吴晓春1,2
1 上海大学材料科学与工程学院, 上海 200072;
2 高品质特殊钢冶金与制备国家重点实验室, 上海 200072
Experimental and Numerical Study on Mechanical Response Behavior of H13 Steel Under Thermo-Mechanical Loading
XU Guocai1,2, LI Junwan1,2, ZUO Pengpeng1,2, WU Xiaochun1,2
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China;
2 State Key Laboratory of Advanced Special Steel, Shanghai 200072, China
下载:  全 文 ( PDF ) ( 4327KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用MTS热-机械疲劳测试系统,同时建立电-磁-热-力多物理场耦合数值模型,研究了H13钢在200~600 ℃范围,对称拉、压机械应变(0.7%和0.9%)控制下同相位(In-phase,IP)和反相位(Out-of-phase,OP)应力-应变响应行为。另外,基于实验和模拟数据,结合寿命预测模型对H13钢进行了寿命预测。结果表明H13钢在准稳定热-机械循环阶段,随着循环次数的增加,最大拉、压应力不断降低;热-机械循环高温半周相较于低温半周会产生更大的非弹性应变;以同相位机械应变为0.7%模拟数据为例,在最大拉、压机械应变下,应力最值分别为598 MPa和-1 148 MPa;H13钢在机械应变为0.7%时,同相位和反相位的实测疲劳寿命(周)分别为287和266,机械应变为0.9%时疲劳寿命分别为207和189;依据实验和模拟数据,结合Ostergren模型得出了预测寿命,并与实测寿命进行比较分析。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐国财
黎军顽
左鹏鹏
吴晓春
关键词:  H13钢  数值模拟  应力-应变响应  寿命预测    
Abstract: In-phase (IP) and out-of-phase (OP) thermo-mechanical fatigue (TMF) behavior of H13 steel were studied in the range of 200—600 ℃, under the symmetrical tension and compression mechanical strain control by the MTS thermo-mechanical fatigue test system and an electromagnetic-thermo-mechanical coupled finite element model. In addition, based on experimental and simulation data, the life prediction of H13 steel was carried out in combination with life prediction models. The results show that the maximum tensile and compressive stresses decrease conti-nuously with the number of cycle increases in the quasi-stable thermo-mechanical cycle. The inelastic strain occurring in the high temperature half cycle of the thermo-mechanical cycle is greater than that in the low temperature half cycle. Taking the simulated data of IP-TMF with the mechanical strain of 0.7% as an example, the maximum stress values at the maximum tensile and compressive mechanical strains are 598 MPa and -1 148 MPa respectively. Under the mechanical strain of 0.7%, the measured IP and OP thermo-mechanical fatigue life (cycle) of H13 steel are 287 and 266 respectively, while under the mechanical strain of 0.9% they has lifes of 207 and 189, respectively. According to the experimental and simulation data, combined with ostergren model, the predicted fatigue life is obtained and compared with the measured one.
Key words:  H13 steel    numerical simulation    stress-strain response    life prediction
                    发布日期:  2020-04-25
ZTFLH:  TG76  
基金资助: “十三五”国家重点研发计划(2016YFB0300400;2016YFB0300404)
通讯作者:  lijunwan@shu.edu.cn   
作者简介:  徐国财,上海大学材料科学与工程学院硕士研究生,2016年9月至今在材料学院模具钢课题组从事热做模具钢热机械疲劳性能研究。参与“十三五”国家重点研发计划“高性能工模具钢及应用”子课题“模具钢服役过程中的组织演变规律及失效机理”等研究,完成多项横向课题研究内容,并发表论文。
黎军顽,上海大学材料科学与工程学院,副教授。2010年7月毕业于复旦大学力学与工程科学系,并获得理学博士学位。同年加入上海大学材料科学与工程学院工作至今,主要从事先进工模具材料加工过程的数值研究、金属材料服役行为以及金属材料力学行为的多尺度研究,对材料微观组织演化及材料设计计算有较丰富的经验。先后主持或参与完成国家重点研发计划子课题、国家自然科学基金及企业横向课题30余项,在国内外学术期刊发表论文50余篇,其中SCI检索35余篇,EI检索40篇,获授专利2项。
引用本文:    
徐国财, 黎军顽, 左鹏鹏, 吴晓春. 热-机械载荷下H13钢力学响应行为实验和数值分析[J]. 材料导报, 2020, 34(8): 8159-8164.
XU Guocai, LI Junwan, ZUO Pengpeng, WU Xiaochun. Experimental and Numerical Study on Mechanical Response Behavior of H13 Steel Under Thermo-Mechanical Loading. Materials Reports, 2020, 34(8): 8159-8164.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040076  或          http://www.mater-rep.com/CN/Y2020/V34/I8/8159
1 Jhavar, Jain N K. Engineering Failure Analysis, 2013, 34(8), 519.
2 Mellouli D, Haddar N, Köster A,et al. Engineering Failure Analysis, 2012, 20(3), 137.
3 Reggiani B, Donati L, Tomesani L. International Journal of Material Forming, 2010, 3(1 Supplement), 395.
4 Huttunen-Saarivirta, Hakala, Metsäjoki, et al. Tribology International, 2018, 119, 567.
5 Chander S, Chawla V. Materials Today Proceedings, 2017,4,1147.
6 Gronostajski Z, Kaszuba M, Polak S, et al. Materials Science & Engineering A, 2016, 657, 147.
7 Engberg G. Larsson L. Low Cycle Fatigue, ASTM STP, 1988, 942, 567.
8 Fang J R, Jiang Q C, Han Z X, et al. Journal of Materials Engineering, 2002 (10), 11(in Chinese).
方健儒, 姜启川, 韩增祥, 等. 材料工程, 2002(10), 11.
9 Fang J R, Jiang Q C, Han Z X, et al. Journal of Mechanical Strength, 2002, 24(4), 571(in Chinese).
方健儒, 姜启川, 韩增祥, 等. 机械强度, 2002, 24(4), 571.
10 Velay V, Bernhart G, Penazzi L. International Journal of Plasticity, 2016, 22(3), 459.
11 Chen H S, Wang Y Q, Du W Q, et al. China Iron and Steel Research Institute Group, 2018, 25, 580.
12 Ma L, Luo Y X, Wang Y Q, et al. Steel Research International, 2017, 88,1700083.
13 Zuo P P, Wu X C, Zeng Y, et al. Journal of University of Science and Technology, 2018, 40(1), 76(in Chinese).
左鹏鹏, 吴晓春, 曾艳, 等. 工程科学学报, 2018, 40(1), 76.
14 Zuo P P, Wu X C, Zeng Y, et al. Fatigue & Fracture of Engineering Materials & Structures, 2018, 41, 159.
15 ASTM E2368-10. Standard practice for strain controlled thermo-mechanical fatigue testing. West Conshohocken: ASTM, 2010,
16 Ostergren W J. Journal of Testing & Evaluation, 1976, 4(5), 327.
17 Rao G S, Srinath J, Raman S G S, et al. Materials Science & Enginee-ring A, 2017, 692, 156.
18 Pan X M, Li X, Chang L, et al. International Journal of Fatigue, 2018, 109, 126.
[1] 郑铭达, 吴红庆, 左鹏鹏, 吴晓春. V对H13型压铸模具钢相变特性的影响[J]. 材料导报, 2020, 34(Z1): 440-443.
[2] 刘轶伦. 高速铁路Cu-Cr-Zr合金承导线对连续挤压工艺的适应性[J]. 材料导报, 2020, 34(8): 8131-8135.
[3] 周蕊, 刘众旺, 张建国, 刘兵飞, 杜春志. 基于DPC-CZM混合模型的金属粉末压坯裂纹三维数值模拟[J]. 材料导报, 2020, 34(6): 6151-6155.
[4] 郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
[5] 余为, 张雄博. 考虑界面的空心玻璃微珠/环氧树脂复合泡沫材料的力学性能仿真分析[J]. 材料导报, 2020, 34(16): 16161-16166.
[6] 权国政, 施瑞菊, 刘乔, 赵江, 周杰, 王月乔. 电弧熔丝单层单道积材残余应力模拟分析及锤击消除研究[J]. 材料导报, 2020, 34(14): 14154-14160.
[7] 郑晨, 白晓宇, 张明义, 王海刚. 玻璃纤维增强聚合物锚杆在地下结构抗浮工程中的研究进展[J]. 材料导报, 2020, 34(13): 13194-13020.
[8] 余雷, 王辉, 单兵, 姚炜峰, 唐姝文, 张俊, 陈业高. 低雾化气压对喷射成形雾化过程的影响[J]. 材料导报, 2019, 33(Z2): 463-467.
[9] 刘伟东, 薄旭盛, 何成. 基于轻量化材料防撞梁的低速碰撞性能研究[J]. 材料导报, 2019, 33(Z2): 468-472.
[10] 于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
[11] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[12] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[13] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[14] 陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
[15] 乔宏霞, 郭向柯, 朱彬荣. 三参数Weibull分布的多因素作用下混凝土加速寿命试验[J]. 材料导报, 2019, 33(4): 639-643.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed