Please wait a minute...
材料导报  2020, Vol. 34 Issue (8): 8165-8171    https://doi.org/10.11896/cldb.19040111
  高分子与聚合物基复合材料 |
基于共价固定高密度透明质酸构建具有抗菌抗凝血双功能的表面
马文梅, 黄楠, 熊开琴
西南交通大学材料科学与工程学院, 成都 610031
Construction of Surface with Anticoagulant and Antibacterial Functions via a Covalent Immobilization of Hyaluronic Acid with High Density
MA Wenmei, HUANG Nan, XIONG Kaiqin
School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
下载:  全 文 ( PDF ) ( 3827KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 表面血栓生成和细菌感染是导致体外血液循环装置及留置器械等血液接触类器材失效的重要原因,表面接枝生物活性分子是赋予材料表面抗血栓及抗菌性能的重要手段。然而,现有的抗菌抗凝血双功能改性方法通常基于复杂的改性策略并难以良好地整合抗菌抗凝血的效能,如普遍使用的含银抗菌策略对血液抗凝并不友好。因此,利用简单接枝生物分子同时提高血液接触材料的抗菌抗凝血性能具有很大的挑战和意义。本研究将透明质酸(HA)分子高密度地接枝在氨基化表面,利用透明质酸的高度水合能力和除污特性,赋予了材料表面有效的抗菌与抗凝血功能。本策略首先将聚烯丙胺(PAa)在碱性条件下以席夫碱反应和迈克尔加成方式接枝在聚多巴胺(PDA)涂层表面,从而构建出富氨基涂层(PADA)。进一步通过酰胺化反应将HA共价固定在PADA表面,得到功能化涂层(HA-PADA)。衰减全反射傅里叶变换红外光谱(ATR-FTIR)和X射线光电子能谱(XPS)结果证实成功制备了HA-PADA涂层。体外纤维蛋白原和血小板的粘附激活实验以及抗菌实验的结果验证了HA-PADA涂层可以显著抑制凝血和细菌粘附。因此,该方法构建的具有高HA密度且稳定的HA-PADA双功能涂层对于提高血液接触类器材表面的血液相容性和抗菌性能具有很好的参考意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马文梅
黄楠
熊开琴
关键词:  透明质酸  表面改性  抗凝血  抗菌    
Abstract: Thrombosis and infections are the two major clinical complications that lead to the failure of blood-contacting biomaterials, such as in vitro blood circulation and indwelling devices. Grafting of bio-functional molecules is one of the important methods for surface modification of biomaterials. However, existing methods to solve these two complications are often based on complex modification strategies and a series of adverse reactions, for example, the commonly used silver-containing antibacterial strategy exhibits undesired hemocompatibility. Therefore, improving the antibacterial and anticoagulant properties of blood-contacting materials by simply grafting biomolecules is challenging and significant. In this study, poly(allylamine) (PAa) modified poly(dopamine) (PDA) through Schiff alkali reaction and Michael addition in alkaline condition to construct a rich-amine coating (PADA). HA was covalently immobilized to PADA based on amine coupling. The functional coating (HA-PADA) obtained both anticoagulant and antibacterial properties due to the water binding capacity and antifouling property of HA. The successful preparation of the HA-PADA coating was confirmed by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The results of the adhesion and activation of fibrinogen and platelets and the antibacterial test on the surfaces confirmed that the HA-PADA coatings can significantly inhibit coagulation and bacterial adhesion. We anticipate that the dual-functional HA-PADA coating strategy with stable and ultra-high HA density would be a milestone in the development of surface engineering, especially to that of blood-contacting biomedical devices.
Key words:  hyaluronic acid    surface modification    anticoagulant    antibacterial
                    发布日期:  2020-04-25
ZTFLH:  TB34  
  TB324  
  R318.08  
基金资助: 国家自然科学基金重点项目(81330031)
通讯作者:  huangnan1956@163.com   
作者简介:  马文梅,就读于西南交通大学材料科学与工程专业,攻读硕士学位。研究方向是血液接触材料的表面改性方法。
黄楠,西南交通大学材料科学与工程学院教授,1985年毕业于西南交通大学,获得硕士学位。分别于1989—1991年、1998—1999年在德国埃尔兰根大学和德国罗森多夫研究中心担任研究员和客座教授。研究方向包括生物材料的表界面、可降解的生物材料以及心血管装置。 发明的一种血管支架已进入临床使用。
引用本文:    
马文梅, 黄楠, 熊开琴. 基于共价固定高密度透明质酸构建具有抗菌抗凝血双功能的表面[J]. 材料导报, 2020, 34(8): 8165-8171.
MA Wenmei, HUANG Nan, XIONG Kaiqin. Construction of Surface with Anticoagulant and Antibacterial Functions via a Covalent Immobilization of Hyaluronic Acid with High Density. Materials Reports, 2020, 34(8): 8165-8171.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040111  或          http://www.mater-rep.com/CN/Y2020/V34/I8/8165
1 Vogler E A, Siedlecki C A. Biomaterials, 2009, 30(10), 1857.
2 Moellering R C. Journal of Antimicrobial Chemotherapy, 2012, 67(1), 4.
3 Benedetta A, Sepideh B N, Christophe C,et al. Lancet, 2011, 377(9761), 228.
4 Aw J, Widjaja F, Ding Y. et al. Chemical Communications, 2017, 53(23), 3330.
5 Ji H, Sun H, Qu X. Advanced Drug Delivery Reviews, 2016, 105, 176.
6 Pai M P,Mercier R C,Koster S A. Annals of Pharmacotherapy, 2006, 40(2), 224.
7 Matthijs D H, Mouton J W, Anker J N, et al. Clinical Pharmacokinetics, 2004, 43(7), 417.
8 Majumdar P,Webster D C. Macromolecules, 2005, 38(14),5857.
9 Vermette P, Meagher L,et al. Colloids & Surfaces B Biointerfaces, 2003, 28(2), 153.
10 Kim Y H, Dong K H, Park K D, et al. Biomaterials, 2003, 24(13), 2213.
11 Zheng Z, Timothy C, Shengfu C, et al. Langmuir, 2006, 22(24), 10072.
12 Sibarani J, Takai M, Ishihara K. Colloids & Surfaces B Biointerfaces, 2007, 54(1), 88.
13 Xu Q W, Xiao S Y, et al. Chinese Tissue Engineering Research, 2007, 11(13), 2415(in Chinese).
许乾慰, 肖世英, 等.中国组织工程研究, 2007, 11(13), 2415
14 Dang Y P, Cai S X, Ma K W. Chinese Journal of Medical Physics, 2007, 24(6), 435(in Chinese).
党英萍, 蔡绍皙, 麻开旺. 中国医学物理学杂志, 2007, 24(6), 435.
15 Tang C, Wang G, Cao Y, et al. Applied Surface Science, 2008, 255(2), 315.
16 Hu C, Liu S, Li B, et al. Advanced Healthcare Materials, 2013, 2(10), 1314.
17 Chen H T, Lin H L, Chen I G. et al. ACS Applied Materials & Interfaces, 2015, 7(18), 9479.
18 Hui Q, Sun C, Chao H, et al. Journal of Membrane Science, 2014, 468(20), 172.
19 Chou Y N, Venault A, Cho C H, et al. Langmuir the ACS Journal of Surfaces & Colloids, 2017, 33(38), 7b02164.
20 Yang Z, Tu Q, Wang J, et al. Biomaterials, 2012, 33(28), 6615.
21 Taolei S, Hong T, Dong H, et al. Small, 2010, 1(10), 959.
22 Yang Z, Yang Y, Xiong K, et al. Biomaterials, 2015, 63,80.
23 Prime K L, Whitesides G M. Science, 1991, 252(5009), 1164.
24 Liu X, Huang R, Su R, et al. ACS Applied Materials & Interfaces, 2014, 6(15), 13034.
25 Stella B, Maria Pilar A S, Finlay J A, et al. Langmuir the ACS Journal of Surfaces & Colloids, 2013, 29(12), 4039.
26 Kafedjiiski K, Jetti R K R, Föger F, et al. International Journal of Pharmaceutics, 2007, 343(1), 48.
27 Barbucci R, Lamponi S, Magnani A, et al. Journal of Thrombosis & Thrombolysis, 1998, 6(2), 109.
28 Wu F, Li J, Zhang K, et al. ACS Applied Materials & Interfaces, 2016, 8(1), 109.
29 Xue P, Li Q, Li Y, et al. ACS Applied Materials & Interfaces, 2017, 9(39), 33632.
30 Cho Y, Si Y S, Bang J P, et al. Macromolecular Research, 2017, 25(8), 1.
31 Guicai L, Ping Y, Yuzhen L, et al. Biomacromolecules, 2011, 12(4), 1155.
32 Ritchie J L, H Dennis A, Patrick A, et al. British Journal of Haematology, 2015, 116(4), 892.
33 Li Gang, Fu Tao. Journal of Chongqing University of Technology (Natural Science),2019,33(10),73(in Chinese).
李纲, 付涛. 重庆理工大学学报(自然科学),2019,33(10),73.
34 Li X, Hua Q, Peng G, et al. NPG Asia Materials, 2018, 10(10), 38.
35 Sato M, Ohashi T. Biorheology, 2005, 42(6), 421.
36 Borah R, Kumar A, Das M K, et al. RSC Advances, 2015, 5(60), 48971.
37 Yu X L, Wang C D, Li B L, et al. Biomedical Engineering Research, 2005, 24(1), 61(in Chinese).
于学丽, 王传栋, 李保陆, 等. 生物医学工程研究, 2005, 24(1), 61.
38 Wootton D M, Ku D N. Annual Review of Biomedical Engineering, 1999, 1(1), 299.
39 Wu K K. Journal of Internal Medicine, 1996, 239(1), 17.
40 Shi Q, Luan S F, Jin J, et al. China Material Progress, 2014, 33(4), 212(in Chinese).
石强, 栾世方, 金晶,等. 中国材料进展, 2014, 33(4), 212.
41 Zeng Fanpeng, Hu Guang, Luo Limei, et al. Journal of Chongqing University of Technology (Natural Science),2019,33(11),185(in Chinese).
曾凡鹏, 胡光, 罗丽梅, 等. 重庆理工大学学报(自然科学), 2019,33(11),185.
42 Michanetzis G P A, Katsala N, Missirlis Y F. Biomaterials, 2003, 24(4), 677.
43 Wendel H P, Weber N, Ziemer G. Immunopharmacology, 1999, 43(2-3), 149.
44 Hamerli P, Weigel T, Groth T, et al. Biomaterials, 2003, 24(22), 3989.
45 Liu L, Freedman J, Hornstein A,et al. British Journal of Haematology, 2015, 92(2), 458.
46 Shi H C, Yin J H, et al. Chinese Polymer Bulletin, 2016 (9), 196(in Chinese).
石恒冲, 殷敬华,等. 高分子通报, 2016 (9), 196.
47 Matthew N, Miljan K, Mostafa N, et al. Journal of Physical Chemistry B, 2013, 117(47), 14697.
48 Bechinger B, Gorr S U. Journal of Dental Research, 2017, 96(3), 254.
[1] 张超, 张利, 刘兴华, 陈琳, 杨永珍, 于世平. 碳纳米材料的抗菌性及在生物医学中的应用研究进展[J]. 材料导报, 2020, 34(Z1): 53-57.
[2] 孙美玲, 黄肖容, 王立栋. Cu-Zn/α-Al2O3中空纤维抗菌膜的制备与性能研究[J]. 材料导报, 2020, 34(6): 6024-6028.
[3] 邢宝林, 鲍倜傲, 李旭升, 史长亮, 郭晖, 王振帅, 侯磊, 张传祥, 岳志航. 锂离子电池用石墨类负极材料结构调控与表面改性的研究进展[J]. 材料导报, 2020, 34(15): 15063-15068.
[4] 魏钰坤, 廖海峰, 颜海涛, 吴小乐, 戴乐阳. 介质阻挡放电等离子体辅助球磨对纳米TiO2粉体的表面改性[J]. 材料导报, 2020, 34(14): 14039-14044.
[5] 王海风, 徐桂香, 董芸谷, 熊能, 王若轩. 利用离子交换法制备高强载银抗菌玻璃及其性能测试[J]. 材料导报, 2020, 34(12): 12040-12044.
[6] 孙莉, 陈延明. SDS表面修饰纳米ZnO制备及抗菌性能研究[J]. 材料导报, 2019, 33(Z2): 89-91.
[7] 王晓燕, 王继梅, 侯国艳. 富锌载银可溶玻璃抗菌材料的性能[J]. 材料导报, 2019, 33(Z2): 92-96.
[8] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[9] 肖忆楠, 乔岩欣, 李月明, 盛立远, 赖琛, 奚廷斐. 医用钛及钛合金表面改性技术的研究进展[J]. 材料导报, 2019, 33(Z2): 336-342.
[10] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[11] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[12] 胡银春, 程一竹, 王仁虎, 殷萌, 魏延, 杜晶晶, 黄棣, 陈维毅. 静电纺Ag@MOF-5/β-CD抗菌纤维膜的制备及性能[J]. 材料导报, 2019, 33(22): 3825-3828.
[13] 刘俊莉, 邵建真, 李军奇, 刘辉, 谢乔. 新型ZnO/BiOI杂化纳米花的合成及可见光驱动抗菌活性[J]. 材料导报, 2019, 33(2): 205-210.
[14] 刘新华, 储兆洋, 李永, 郑宏亮, 方寅春. 含聚甲基丙烯酸二甲氨基乙酯刷的羽毛接枝共聚物的制备及性能[J]. 材料导报, 2019, 33(2): 342-346.
[15] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed