Please wait a minute...
材料导报  2019, Vol. 33 Issue (2): 205-210    https://doi.org/10.11896/cldb.201902001
  无机非金属及其复合材料 |
新型ZnO/BiOI杂化纳米花的合成及可见光驱动抗菌活性
刘俊莉1, 邵建真1, 李军奇1, 刘辉1, 谢乔2
1 陕西科技大学材料科学与工程学院,西安 710021
2 西安超码科技有限公司,西安 710021
Facile Synthesis of Novel ZnO/BiOI Hybrid Nanoflowers with Enhanced
Visible-light Antibacterial Activities
LIU Junli1, SHAO Jianzhen1, LI Junqi1, LIU Hui1, XIE Qiao2
1 School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021
2 Supercode Technology Co., Ltd, Xi’an 710021
下载:  全 文 ( PDF ) ( 4608KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过简单的水热法成功制备了新型三维异质结抗菌剂ZnO/BiOI杂化纳米花。采用X射线粉末衍射仪、扫描电镜、高分辨透射电镜、Bru-nauer-Emmett-Teller、X射线光电子能谱仪等对所得材料进行了表征。此外,研究了ZnO/BiOI杂化纳米花在可见光下对大肠杆菌(E.Coli)的抗菌活性。结果表明,与ZnO(56%)和BiOI(74%)相比,ZnO/BiOI异质结对大肠杆菌(E.Coli)的抗菌活性最强(93%)。这是由于ZnO/BiOI异质结高的比表面积,以及电荷从ZnO表面有效地转移到BiOI表面,有助于形成羟基自由基。研究表明,两种不同半导体之间的异质结构对于其光生载流子的动态特性起着非常重要的作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘俊莉
邵建真
李军奇
刘辉
谢乔
关键词:  ZnO/BiOI杂化纳米花  异质结  大肠杆菌  抗菌活性    
Abstract: The novel 3D heterojunction antibacterial agent ZnO/BiOI hybrid nanoflowers were successfully fabricated by a facile hydrothermal method. A series of techniques were used to characterize the obtained materials, including X-ray powder diffraction, scanning electron microscope, high resolution transmission electron microscopy, Brunauer-Emmett-Teller, X-ray photo-electron spectroscopy. Moreover, the antibacterial activities of the obtained ZnO/BiOI hybrid nanoflowers to Escherichia Coli(E.Coli) under visible light were investigated. The results indicated that ZnO/BiOI heterojunction had the strongest antimicrobial activity against Escherichia Coli(E.Coli)(93%) in comparison to those with ZnO(56%) and BiOI(74%), separately. It was due to the high surface areas, and effective interfacial charge transfer from ZnO to BiOI that facilitated the formation of hydroxy radicals. This study showed that the heterostructure between two different semiconductors played a very important role in the dynamic characteristics of their photogenerated carriers.
Key words:  ZnO/BiOI hybrid nanoflowers    heterostructure    Escherichia Coli    antibacterial activities
                    发布日期:  2019-01-31
ZTFLH:  TB33  
基金资助: 国家自然科学基金青年基金项目(51802185);陕西省自然科学基础研究计划项目(2018JQ5083);陕西省教育厅专项科研计划项目(17JK0114)
作者简介:  刘俊莉,陕西科技大学材料学院讲师,硕士研究生导师。liujunli042@163.com
引用本文:    
刘俊莉, 邵建真, 李军奇, 刘辉, 谢乔. 新型ZnO/BiOI杂化纳米花的合成及可见光驱动抗菌活性[J]. 材料导报, 2019, 33(2): 205-210.
LIU Junli, SHAO Jianzhen, LI Junqi, LIU Hui, XIE Qiao. Facile Synthesis of Novel ZnO/BiOI Hybrid Nanoflowers with Enhanced
Visible-light Antibacterial Activities. Materials Reports, 2019, 33(2): 205-210.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201902001  或          http://www.mater-rep.com/CN/Y2019/V33/I2/205
1 Chen S, Quan Y, Yu L, et al. ACS Biomaterials Science & Engineering,2017,3(3),313.
2 Paladini F, Pollini M, Sannino A, et al. Biomacromolecules,2015,16(7),1873.
3 Wang Y, Li X, Wang N, et al. Separation & Purification Technology,2008,62(3),727.
4 Han C, Yang M Q, Weng B, et al. Physical Chemistry Chemical Phy-sics,2014,16(32),16891.
5 Zhao H, Tian F, Wang R, et al. Advanced Sciences & Engineering,2014,3(1),3.
6 Chen L, Yin S F, Luo S L, et al. Industrial & Engineering Chemistry Research,2012,51(19),6760.
7 Xia J, Yin S, Li H, et al. Langmuir the ACS Journal of Surfaces & Colloids,2011,27(3),1200.
8 Chen R, So M H, Yang J, et al. Chemical Communications,2006,21(21),2265.
9 Dai G, Yu J, Liu G. Journal of Physical Chemistry C,2011,115(15),7339.
10 Wang Z, Huang B, Dai Y, et al.Journal of Physical Chemistry C,2014,113(11),4612.
11 Jiang J, Zhang X, Sun P, et al. Journal of Physical Chemistry C,2011,115(42),20555.
12 Wang K, Sun N, Li X, et al. Analytical Methods,2015,7(21),9340.
13 Zhang Y, Liu S, Xiu Z, et al. Journal of Nanoparticle Research,2014,16(5),1.
14 Zhang X, Zhang L, Xie T, et al. Journal of Physical Chemistry C,2009,113(17),7371.
15 Li X, Niu C, Huang D, et al. Applied Surface Science,2013,286(12),40.
16 Song C, Feng Y, Shi W, et al. Crystengcomm,2016,18(40).
17 He R, Cao S, Guo D, et al. Ceramics International,2015,41(3),3511.
18 Lu W, Liu G, Gao S, et al. Nanotechnology,2008,19(44),445.
19 Kumar R, Anandan S, Hembram K, et al. ACS Applied Materials & Interfaces,2014,6(15),13138.
20 Ma J, Liu J, Bao Y, et al. Crystal Research & Technology,2013,48(4),251.
21 Ma J, Liu J, Bao Y, et al. Ceramics International,2013,39(3),2803.
22 Chang Y, Xu J, Zhang Y, et al. Journal of Physical Chemistry C,2009,113(43),18761.
23 Gurunathan K. International Journal of Hydrogen Energy,2004,29(9),933.
24 Zhang K L, Liu C M, Huang F Q, et al. Applied Catalysis B Environmental,2006,68(3),125.
25 Coppa B J, Davis R F, Nemanich R J. Applied Physics Letters,2003,82(3),400.
26 Yu J, Yu X. Environmental Science & Technology,2008,42(13),4902.
27 Sing K S W, Everett D H, Haul R A W, et al. Journal of Physical & Colloid Chemistry,1951,55(4),592.
28 Hou L, Hua H, Gan L, et al. Materials Letters,2015,159,35.
29 Sawai J. Journal of Microbiological Methods,2003,54(2),177.
30 Wang G, Chen D, Zhang H, et al. Journal of Physical Chemistry C,2008,112(24),8850.
31 Lei Y, Wang G, Song S, et al. Dalton Transactions,2010,39(13),3273.
32 Wong M S, Chu W C, Sun D S, et al. Applied & Environmental Micro-biology,2006,72(9),6111.
33 Sawai J, Yoshikawa T. Journal of Applied Microbiology,2004,96(4),7.
34 Makhluf S, Dror R, Nitzan Y, et al. Advanced Functional Materials,2010,15(10),1708.
[1] 潘留仙, 夏庆林. 新型二维半导体材料砷烯的研究进展[J]. 材料导报, 2019, 33(z1): 22-27.
[2] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[3] 樊启哲, 廖春发, 陈鑫, 张志文, 余长林. 通过热处理调控光催化剂性质的研究进展[J]. 材料导报, 2019, 33(11): 1853-1859.
[4] 张宇, 王敏, 周鑫, 杨光俊, 柴天煜, 朱彤. Bi2MoO6/BiVO4异质结光催化剂的制备及性能[J]. 材料导报, 2019, 33(10): 1597-1601.
[5] 李丹, 张忞灏, 廖佩姿, 谢远, 甄贺伟, 徐晓玲, 周祚万. 低维氧化锌晶面调控及催化抗菌活性研究进展[J]. 材料导报, 2019, 33(1): 56-64.
[6] 郝立成, 张明, 陈文超, 冯晓东. 高效本征薄层异质结(HIT)太阳电池技术研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 689-695.
[7] 王辉, 李士君, 王梅, 裴彦博, 胡绍争. 载银g-C3N4(Ⅰ)/g-C3N4(Ⅱ)同素异质结催化剂的制备及光催化固氮产氨性能[J]. 材料导报, 2018, 32(20): 3496-3503.
[8] 董虹星, 刘秋平, 贺跃辉. BiVO4基纳米异质结光催化材料的研究进展[J]. 材料导报, 2018, 32(19): 3358-3367.
[9] 王静, 王晓燕, 水中和, 冀志江, 赵春艳, 刘蕊蕊. 玻璃载银抗菌材料的Ag+溶出性质及与大肠杆菌作用机理[J]. 材料导报, 2018, 32(16): 2709-2714.
[10] 惠爱平, 马建中, 刘俊莉. 微波辅助水热法合成的可见光响应型Sm掺杂ZnO微晶的
光催化性能和抗菌活性*
[J]. 《材料导报》期刊社, 2017, 31(2): 13-19.
[11] 肖珍, 张嘉玮, 雷磊, 王焕平, 徐时清. 单晶PZT-CFO铁电-铁磁复合纳米纤维的制备与磁学性能研究*[J]. 《材料导报》期刊社, 2017, 31(15): 153-156.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed