Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (15): 153-156    https://doi.org/10.11896/j.issn.1005-023X.2017.015.024
  铁电及铁磁材料 |
单晶PZT-CFO铁电-铁磁复合纳米纤维的制备与磁学性能研究*
肖珍, 张嘉玮, 雷磊, 王焕平, 徐时清
中国计量大学材料与科学工程学院, 杭州310018;
Preparation and Magnetic Properties of Single-crystal Multiferroic PZT-CFO Nanofiber Composites
XIAO Zhen, ZHANG Jiawei, LEI Lei, WANG Huanping, XU Shiqing
College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018;
下载:  全 文 ( PDF ) ( 1529KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以不同锆掺杂量的前钙钛矿结构钛酸铅和铁酸钴为原料,采用原位固相烧结法合成了一系列单晶锆钛酸铅-铁酸钴(PZT-CFO)复合纳米纤维。X射线衍射、扫描电子显微镜和能谱分析结果表明,一维单晶PZT-CFO复合纳米纤维同时存在钙钛矿相的锆钛酸铅和尖晶石相的铁酸钴。高分辨透射电子显微镜研究证实锆钛酸铅和铁酸钴之间存在外延生长关系。采用振动样品磁强计对PZT-CFO复合纳米纤维的磁学性能进行测试,发现该复合纳米纤维具有明显的铁磁性能,其剩余磁化强度和矫顽力随着锆掺杂量的增加而增加。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖珍
张嘉玮
雷磊
王焕平
徐时清
关键词:  钙钛矿  复合材料  异质结  固相反应  多铁性    
Abstract: One dimensional single-crystal multiferroic composites consisting of PbZrxTi1-xO3 (PZT) nanofibers and CoFe2O4 (CFO) nanodots were prepared by a facile in-situ solid state sintering method, in which pre-perovskite Zr-doped PbTiO3 nanofibers and commercial CFO nanodots were used as precursors. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analyses demonstrated that the PZT-CFO single-crystal multiferroic composites were composed of nanofibers and nanodots. The detailed structural characterizations by transmission electron microscopy (TEM) demonstrated an epitaxial growth relation between PZT nanofibers and CFO nanodots. Ferromagnetism of the nanofiber composites were investigated by vibrating sample magnetometer (VSM), which found PZT-CFO nanocomposites had typical magnetic field hysteresis loops at room temperature. Moreover, the remanent magnetization (Mr) and coercive field (Hc) value increased with the Zr doping concentration.
Key words:  perovskite    composite materials    heterojunction    solid state reaction    multiferroicity
出版日期:  2017-08-10      发布日期:  2018-05-04
ZTFLH:  O646.8  
基金资助: *浙江省自然科学基金(LQ14E020005)
作者简介:  肖珍:女,1986年生,博士,讲师,研究方向为纳米材料的制备和光电性能研究 E-mail:xiaozhen@cjlu.edu.cn
引用本文:    
肖珍, 张嘉玮, 雷磊, 王焕平, 徐时清. 单晶PZT-CFO铁电-铁磁复合纳米纤维的制备与磁学性能研究*[J]. 《材料导报》期刊社, 2017, 31(15): 153-156.
XIAO Zhen, ZHANG Jiawei, LEI Lei, WANG Huanping, XU Shiqing. Preparation and Magnetic Properties of Single-crystal Multiferroic PZT-CFO Nanofiber Composites. Materials Reports, 2017, 31(15): 153-156.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.015.024  或          https://www.mater-rep.com/CN/Y2017/V31/I15/153
1 Eerenstein W, Mathur N D, Scott J F. Multiferroic and magnetoelectric materials[J]. Nature, 2006,442:759.
2 Rocquefelte X, Schwarz K, Blaha P, et al. Room-temperature spin-spiral multiferroicity in high-pressure cupric oxide[J]. Nat Commun,2013,4:2511.
3 Nan C W, Bichurin M I, Dong S X, et al. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions[J]. J Appl Phys,2008,103:031101.
4 Wang W P, Yang H, Xian T, et al. Observation of abnormal magnetoelectric behavior in 0-3 type CoFe2O4-BaTiO3 nanocomposites[J]. Chem Phys Lett,2015,618:72.
5 Zheng H, Wang J, Lofland S E, et al. Multiferroic BaTiO3-CoFe2O4 nanostructures[J]. Science,2004,303:661.
6 Liu B, Sun T, He J Q, et al. Sol-gel-derived epitaxial nanocompo-site thin films with large sharp magnetoelectric effect[J]. ACS Nano,2010,4:6836.
7 Lu X L, Kim Y, Goetze S, et al. Magnetoelectric coupling in ordered arrays of multilayered heteroepitaxial BaTiO3/CoFe2O4 na-nodots[J]. Nano Lett,2011,11:3202.
8 Ma J, et al. Recent progress in multiferroic magnetoelectric compo-sites: From bulk to thin films[J]. Adv Mater,2011,23:1062.
9 Sreenivasulu G, Qu H, Srinivasan G. Multiferroic oxide composites: Synthesis, characterisation and applications[J]. Mater Sci Technol,2014,30:1625.
10 Cai R, Antohe V A, Hu Z, et al. Multiferroic nanopatterned hybrid material with room-temperature magnetic switching of the electric polarization[J]. Adv Mater,2017, 29:1604604.
11 Hua Z H, Li D, Fu H. Sol-gel template synthesis and characterization of magnetoelectric CoFe2O4/BaTiO3 nanotubes[J]. Acta Physico-Chim Sinica,2009,25:145.
12 Raidongia K, Nag A, Sundaresan A, et al. Multiferroic and magnetoelectric properties of core-shell CoFe2O4@BaTiO3 nanocomposites[J]. Appl Phys Lett,2010,97:062904.
13 Xie S H, Ma F Y, Liu Y M, et al. Multiferroic CoFe2O4-Pb(Zr0.52-Ti0.48)O3 core-shell nanofibers and their magnetoelectric coupling[J]. Nanoscale,2011,3:3152.
14 Ren Z H, Xiao Z, Yin S M, et al. Preparation and characterization of single-crystal multiferroic nanofiber composites[J]. J Alloys Compd,2013,552:518.
15 Takasu H. The ferroelectric memory and its applications[J]. J Electroceram,2000,4:327.
16 Deng H, Qiu Y C, Yang S H. General surfactant-free synthesis of MTiO3 (M = Ba, Sr, Pb) perovskite nanostrips[J]. J Mater Chem,2009,19:976.
17 Naumov I I, Fu H X. Spontaneous polarization in one-dimensional Pb(ZrTi)O3 nanowires[J]. Phys Rev Lett,2005,95:247602.
18 Manova E, Kunev B, Paneva D, et al. Mechano-synthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite, CoFe2O4[J]. Chem Mater,2004,16:5689.
19 Xiao Z, Ren Z H, et al. Single-crystal nanofibers of Zr-doped new structured PbTiO3: Hydrothermal synthesis, characte-rization and phase transformation[J]. J Mater Chem,2011,21: 3562.
20 Mathieu A, Lotfi Ben T, Frédéric H, et al. Size-dependent magnetic properties of CoFe2O4 nanoparticles prepared in polyol[J]. J Phys: Condensed Matter,2011,23:506001.
21 Singh S. Munjal S, Khare N. Strain/defect induced enhanced coercivity in single domain CoFe2O4 nanoparticles[J].J Magn Magn Mater,2015,386:69.
22 Xie Shuhong. Fabrication and characterization of nanostructured multiferroic materials [D]. Xiangtan: Xiangtan University, 2008(in Chinese).
谢淑红.多重铁性微纳米材料的制备与表征[D].湘潭:湘潭大学,2008.
[1] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[2] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[3] 张晓辉, 张哲汇, 张效华, 马帅, 岳振星. Ba5[Nb1-x(Al1/3Mo2/3)x]4O15陶瓷的结构和微波介电性能[J]. 材料导报, 2025, 39(2): 23110273-6.
[4] 赵佳薇, 陈浩霖, 罗倪, 刘振国. 卷对卷技术制备钙钛矿太阳能电池的研究进展[J]. 材料导报, 2025, 39(1): 24030057-17.
[5] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[6] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[9] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[10] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[11] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[12] 郑惠文, 金宏璋, 徐炎, 闫磊, 王行柱. 不同取代基对联苯二酰亚胺基空穴传输材料光电性能的影响[J]. 材料导报, 2024, 38(8): 22120082-8.
[13] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[14] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[15] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed