Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (15): 153-156    https://doi.org/10.11896/j.issn.1005-023X.2017.015.024
  铁电及铁磁材料 |
单晶PZT-CFO铁电-铁磁复合纳米纤维的制备与磁学性能研究*
肖珍, 张嘉玮, 雷磊, 王焕平, 徐时清
中国计量大学材料与科学工程学院, 杭州310018;
Preparation and Magnetic Properties of Single-crystal Multiferroic PZT-CFO Nanofiber Composites
XIAO Zhen, ZHANG Jiawei, LEI Lei, WANG Huanping, XU Shiqing
College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018;
下载:  全 文 ( PDF ) ( 1529KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以不同锆掺杂量的前钙钛矿结构钛酸铅和铁酸钴为原料,采用原位固相烧结法合成了一系列单晶锆钛酸铅-铁酸钴(PZT-CFO)复合纳米纤维。X射线衍射、扫描电子显微镜和能谱分析结果表明,一维单晶PZT-CFO复合纳米纤维同时存在钙钛矿相的锆钛酸铅和尖晶石相的铁酸钴。高分辨透射电子显微镜研究证实锆钛酸铅和铁酸钴之间存在外延生长关系。采用振动样品磁强计对PZT-CFO复合纳米纤维的磁学性能进行测试,发现该复合纳米纤维具有明显的铁磁性能,其剩余磁化强度和矫顽力随着锆掺杂量的增加而增加。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖珍
张嘉玮
雷磊
王焕平
徐时清
关键词:  钙钛矿  复合材料  异质结  固相反应  多铁性    
Abstract: One dimensional single-crystal multiferroic composites consisting of PbZrxTi1-xO3 (PZT) nanofibers and CoFe2O4 (CFO) nanodots were prepared by a facile in-situ solid state sintering method, in which pre-perovskite Zr-doped PbTiO3 nanofibers and commercial CFO nanodots were used as precursors. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analyses demonstrated that the PZT-CFO single-crystal multiferroic composites were composed of nanofibers and nanodots. The detailed structural characterizations by transmission electron microscopy (TEM) demonstrated an epitaxial growth relation between PZT nanofibers and CFO nanodots. Ferromagnetism of the nanofiber composites were investigated by vibrating sample magnetometer (VSM), which found PZT-CFO nanocomposites had typical magnetic field hysteresis loops at room temperature. Moreover, the remanent magnetization (Mr) and coercive field (Hc) value increased with the Zr doping concentration.
Key words:  perovskite    composite materials    heterojunction    solid state reaction    multiferroicity
               出版日期:  2017-08-10      发布日期:  2018-05-04
ZTFLH:  O646.8  
基金资助: *浙江省自然科学基金(LQ14E020005)
作者简介:  肖珍:女,1986年生,博士,讲师,研究方向为纳米材料的制备和光电性能研究 E-mail:xiaozhen@cjlu.edu.cn
引用本文:    
肖珍, 张嘉玮, 雷磊, 王焕平, 徐时清. 单晶PZT-CFO铁电-铁磁复合纳米纤维的制备与磁学性能研究*[J]. 《材料导报》期刊社, 2017, 31(15): 153-156.
XIAO Zhen, ZHANG Jiawei, LEI Lei, WANG Huanping, XU Shiqing. Preparation and Magnetic Properties of Single-crystal Multiferroic PZT-CFO Nanofiber Composites. Materials Reports, 2017, 31(15): 153-156.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.015.024  或          http://www.mater-rep.com/CN/Y2017/V31/I15/153
1 Eerenstein W, Mathur N D, Scott J F. Multiferroic and magnetoelectric materials[J]. Nature, 2006,442:759.
2 Rocquefelte X, Schwarz K, Blaha P, et al. Room-temperature spin-spiral multiferroicity in high-pressure cupric oxide[J]. Nat Commun,2013,4:2511.
3 Nan C W, Bichurin M I, Dong S X, et al. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions[J]. J Appl Phys,2008,103:031101.
4 Wang W P, Yang H, Xian T, et al. Observation of abnormal magnetoelectric behavior in 0-3 type CoFe2O4-BaTiO3 nanocomposites[J]. Chem Phys Lett,2015,618:72.
5 Zheng H, Wang J, Lofland S E, et al. Multiferroic BaTiO3-CoFe2O4 nanostructures[J]. Science,2004,303:661.
6 Liu B, Sun T, He J Q, et al. Sol-gel-derived epitaxial nanocompo-site thin films with large sharp magnetoelectric effect[J]. ACS Nano,2010,4:6836.
7 Lu X L, Kim Y, Goetze S, et al. Magnetoelectric coupling in ordered arrays of multilayered heteroepitaxial BaTiO3/CoFe2O4 na-nodots[J]. Nano Lett,2011,11:3202.
8 Ma J, et al. Recent progress in multiferroic magnetoelectric compo-sites: From bulk to thin films[J]. Adv Mater,2011,23:1062.
9 Sreenivasulu G, Qu H, Srinivasan G. Multiferroic oxide composites: Synthesis, characterisation and applications[J]. Mater Sci Technol,2014,30:1625.
10 Cai R, Antohe V A, Hu Z, et al. Multiferroic nanopatterned hybrid material with room-temperature magnetic switching of the electric polarization[J]. Adv Mater,2017, 29:1604604.
11 Hua Z H, Li D, Fu H. Sol-gel template synthesis and characterization of magnetoelectric CoFe2O4/BaTiO3 nanotubes[J]. Acta Physico-Chim Sinica,2009,25:145.
12 Raidongia K, Nag A, Sundaresan A, et al. Multiferroic and magnetoelectric properties of core-shell CoFe2O4@BaTiO3 nanocomposites[J]. Appl Phys Lett,2010,97:062904.
13 Xie S H, Ma F Y, Liu Y M, et al. Multiferroic CoFe2O4-Pb(Zr0.52-Ti0.48)O3 core-shell nanofibers and their magnetoelectric coupling[J]. Nanoscale,2011,3:3152.
14 Ren Z H, Xiao Z, Yin S M, et al. Preparation and characterization of single-crystal multiferroic nanofiber composites[J]. J Alloys Compd,2013,552:518.
15 Takasu H. The ferroelectric memory and its applications[J]. J Electroceram,2000,4:327.
16 Deng H, Qiu Y C, Yang S H. General surfactant-free synthesis of MTiO3 (M = Ba, Sr, Pb) perovskite nanostrips[J]. J Mater Chem,2009,19:976.
17 Naumov I I, Fu H X. Spontaneous polarization in one-dimensional Pb(ZrTi)O3 nanowires[J]. Phys Rev Lett,2005,95:247602.
18 Manova E, Kunev B, Paneva D, et al. Mechano-synthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite, CoFe2O4[J]. Chem Mater,2004,16:5689.
19 Xiao Z, Ren Z H, et al. Single-crystal nanofibers of Zr-doped new structured PbTiO3: Hydrothermal synthesis, characte-rization and phase transformation[J]. J Mater Chem,2011,21: 3562.
20 Mathieu A, Lotfi Ben T, Frédéric H, et al. Size-dependent magnetic properties of CoFe2O4 nanoparticles prepared in polyol[J]. J Phys: Condensed Matter,2011,23:506001.
21 Singh S. Munjal S, Khare N. Strain/defect induced enhanced coercivity in single domain CoFe2O4 nanoparticles[J].J Magn Magn Mater,2015,386:69.
22 Xie Shuhong. Fabrication and characterization of nanostructured multiferroic materials [D]. Xiangtan: Xiangtan University, 2008(in Chinese).
谢淑红.多重铁性微纳米材料的制备与表征[D].湘潭:湘潭大学,2008.
[1] 潘留仙, 夏庆林. 新型二维半导体材料砷烯的研究进展[J]. 材料导报, 2019, 33(z1): 22-27.
[2] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[3] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[4] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[5] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[6] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[7] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[8] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[9] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[10] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[11] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[12] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[13] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[14] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[15] 肖长江. 钙钛矿铁电体在超高压下的铁电重现[J]. 材料导报, 2019, 33(7): 1163-1168.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed