Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 22090217-15    https://doi.org/10.11896/cldb.22090217
  金属与金属基复合材料 |
磁性镓基液态金属复合材料的研究进展
陆奔1, 李安敏1,2,3,4,*, 杨树靖1, 袁子豪1, 惠佳琪1
1 广西大学资源环境与材料学院,南宁 530004
2 广西大学省部共建特色金属材料与组合结构全寿命安全国家重点实验室,南宁 530004
3 广西大学有色金属及材料加工新技术教育部重点实验室,南宁 530004
4 广西大学广西高校高性能结构材料及热表加工重点实验室,南宁 530004
Research Progress of Magnetic Ga-based Liquid Metal Composites
LU Ben1, LI Anmin1,2,3,4,*, YANG Shujing1, YUAN Zihao1, HUI Jiaqi1
1 School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
2 State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
3 MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi University, Nanning 530004, China
4 Guangxi Higher Education Key Laboratory of High Performance Structural Materials and Heat Treatment & Surface Processing, Guangxi University, Nanning 530004, China
下载:  全 文 ( PDF ) ( 69733KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镓基液态金属具有高导电性、高导热性、高流动性和优良的生物相容性,是一种具有很大发展和应用前景的功能材料。镓基液态金属与其他不同物理化学性质的材料组合而成的镓基液态金属复合材料为基础研究与应用研究提供了一个新的方向,为解决柔性电子、热调控和生物医学等各个领域的挑战性问题提供了新的思路并表现出重大潜力。磁性粒子的引入可以使镓基液态金属具有良好的磁性能。作为一种新兴的磁性功能材料或磁性智能材料,磁性镓基液态金属复合材料在柔性电子、微电机、靶向给药、热调控、屏蔽与吸波等领域已展现出初步的研究和应用价值。本文系统地总结和评述了磁性镓基液态金属复合材料的研究进展。从基础研究、磁力控制、磁热控温、屏蔽与吸波四个方面综述了磁性镓基液态金属复合材料的性能和应用,说明了这种复合策略的有效性。这可为磁性镓基液态金属复合材料的进一步研究与开发提供思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陆奔
李安敏
杨树靖
袁子豪
惠佳琪
关键词:  液态金属  镓基合金  磁性材料  复合材料  软材料  柔性电子  智能材料    
Abstract: Ga-based liquid metal has high electrical conductivity, high thermal conductivity, high fluidity, and excellent biocompatibility, and is a functional material with great development and application prospects. Ga-based liquid metal composites developed in combination with other different physical and chemical properties materials offer a new platform for basic and applied research, providing new ideas and showing great potential for solving challenging problems in various fields such as flexible electronics, thermal management, and biomedical science. The introduction of magnetic particles can provide Ga-based liquid metal with good magnetic properties. As an emerging magnetic functional material or magnetic intelligent material category, magnetic Ga-based liquid metal composites have shown preliminary research and application value in the fields of flexible electronics, micromotors, targeted drug delivery, thermal management, and shielding and absorption. In this paper, we systematically summarize and review the research and progress of magnetic Ga-based liquid metal composites. The effectiveness of this composite strategy is illustrated by reviewing the properties and applications of magnetic Ga-based liquid metal composites in four categories: basic research, magnetic control, magnetic thermal management, and shielding and absorption. This review provides an overview of ideas for the further research and deve-lopment of magnetic Ga-based liquid metal composites.
Key words:  liquid metal    gallium base alloy    magnetic material    composite    soft material    flexible electronics    intelligent material
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  TB331  
基金资助: 2021年中央引导地方科技发展资金专项(桂科ZY21195030)
通讯作者:  *李安敏,广西大学资源环境与材料学院副教授、硕士研究生导师。1995年7月本科毕业于武汉科技大学金属材料及热处理专业,2010年6月在广西大学结构工程专业取得博士学位。主要从事高熵合金、铝合金的强韧化、复合材料的研究工作。近年来,在这些领域发表论文30余篇,包括Journal of Materials Engineering and Performance、Acta Metallurgica Sinica、Journal of Electronic Materials等。lianmin@gxu.edu.cn   
作者简介:  陆奔,2020年6月于广西大学获得工学学士学位。现为广西大学资源环境与材料学院的材料科学与工程硕士研究生,在李安敏副教授的指导下进行研究。目前主要研究领域为复合材料。
引用本文:    
陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
LU Ben, LI Anmin, YANG Shujing, YUAN Zihao, HUI Jiaqi. Research Progress of Magnetic Ga-based Liquid Metal Composites. Materials Reports, 2024, 38(8): 22090217-15.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22090217  或          https://www.mater-rep.com/CN/Y2024/V38/I8/22090217
1 Clarkson T W. Critical Reviews in Clinical Laboratory Sciences, 1997, 34, 369.
2 Schroeder W H, Munthe J. Atmospheric Environment, 1998, 32, 809.
3 Liu T Y, Sen P, Kim C J. Journal of Microelectromechanical Systems, 2012, 21, 443.
4 Zeng M Q, Li L Y, Zhu X H, et al. Accounts of Materials Research, 2021, 2, 669.
5 Dickey M D. Advanced Materials, 2017, 29, 1606425.
6 Wang X H, Lu C N, Rao W. Applied Thermal Engineering, 2021, 192, 116937.
7 Yan J J, Lu Y, Chen G J, et al. Chemical Society Reviews, 2018, 47, 2518.
8 Liang S T, Wang H Z, Liu J. Chemistry, 2018, 24, 17616.
9 Hirsch A, Dejace L, Michaud H O, et al. Accounts of Chemical Research, 2019, 52, 534.
10 Guo X L, Ding Y, Yu G H, et al. Advanced Materials, 2021, 33, 2170226.
11 Ge H S, Li H Y, Mei S F, et al. Renewable and Sustainable Energy Reviews, 2013, 21, 331.
12 Chiew C, Morris M J, Malakooti M H. Materials Advances, 2021, 2, 7799.
13 Linderoth S, Rasmussen L H, MØrup S. Journal of Applied Physics, 1991, 69, 5124.
14 Martin A, Odier P, Pinton J F, et al. The European Physical Journal B, 2000, 18, 337.
15 de Vicente J, Klingenberg D, Hidalgo-Alvarez R. Soft Matter, 2010, 7, 3701.
16 Bica I, Liu Y D, Choi H J. Journal of Industrial and Engineering Che-mistry, 2013, 19, 394.
17 Chen S, Liu J. ES Energy & Environment, 2019, 5, 8.
18 Lin Y L, Genzer J, Dickey M D. Advanced Science, 2020, 7, 2000192.
19 Haynes W M, Lide D R, Bruno T J. CRC handbook of chemistry and physics(97th Edition), CRC Press, USA, 2017, pp. 666.
20 Gong X G, Chiarotti G L, Parrinello M, et al. Physical Review B, 1991, 43, 14277.
21 Gong X G, Chiarotti G L, Parrinello M, et al. Europhysics Letters, 1993, 21, 469.
22 Malakooti M H, Kazem N, Yan J J, et al. Advanced Functional Mate-rials, 2019, 29, 1906098.
23 Ding Y, Guo X, Qian Y, et al. Advanced Materials, 2020, 32, 2002577.
24 Sun X Y, Yuan B, Sheng L, et al. Applied Materials Today, 2020, 20, 100722.
25 Wang Q, Yu Y, Pan K Q, et al. IEEE Transactions on Biomedical Engineering, 2014, 61, 2161.
26 Kulkarni S, Pandey A, Mutalik S. Nanomedicine: Nanotechnology, Bio-logy and Medicine, 2020, 26, 102175.
27 Sivan V, Tang S Y, O’Mullane A P, et al. Advanced Functional Mate-rials, 2013, 23, 144.
28 Chen Y Z, Liu Z, Zhu D Y, et al. Materials Horizons, 2017, 4, 591.
29 Tang J B, Zhao X, Li J, et al. ACS Applied Materials & Interfaces, 2017, 9, 35977.
30 Li T, Lv Y G, Liu J, et al. Forsch Ingenieurwes, 2005, 70, 243.
31 Miner A, Ghoshal U. Applied Physics Letters, 2004, 85, 506.
32 Liu H, Liu H Q, Lin Z Y, et al. Rare Metal Materials and Engineering, 2018, 47, 2668.
33 Chiechi R C, Weiss E A, Dickey M D, et al. Angewandte Chemie, 2007, 120, 148.
34 Dickey M D, Chiechi R C, Larsen R J, et al. Advanced Functional Materials, 2008, 18, 1097.
35 Khan M R, Eaker C B, Bowden E F, et al. The Proceedings of the National Academy of Sciences, 2014, 111, 14047.
36 Eaker C B, Dickey M D. Applied Physics Reviews, 2016, 3, 031103.
37 Chen S, Wang H Z, Zhao R Q, et al. Matter, 2020, 2, 1446.
38 Sun X M, Li Y D. Angewandte Chemie International Edition, 2004, 43, 597.
39 Carle F, Bai K L, Casara J, et al. Physical Review Fluids, 2017, 2, 013301.
40 Jeon J, Lee J B, Chung S K, et al. In: 2015th-2018th International Conference on Solid-State Sensors, Actuators and Microsystems. Anchorage, AK, USA, 2015, pp. 1834.
41 Jeon J, Lee J B, Chung S K, et al. Journal of Microelectromechanical Systems, 2016, 25, 1050.
42 Kim D, Lee J B. Journal of the Korean Physical Society, 2015, 66, 282.
43 Jeon J, Lee J B, Chung S K, et al. Lab on a Chip, 2017, 17, 128.
44 Chen R, Xiong Q, Song R Z, et al. Advanced Materials Interfaces, 2019, 6, 1901057.
45 Seo J, Lee J B, Chung S K, et al. In: The 31st IEEE International Conference on Micro Electro Mechanical Systems. Belfast, UK, 2018, pp.145.
46 Jeong J, Seo J, Chung S K, et al. In: The 32nd IEEE International Conference on Micro Electro Mechanical Systems. Seoul, Korea, 2019, pp. 409.
47 Jeong J, Seo J, Chung S K, et al. Journal of Microelectromechanical Systems, 2020, 29, 1208.
48 Jeong J, Lee J B, Chung S K, et al. Lab on a Chip, 2019, 19, 3261.
49 Jeong J, Seo J, Lee J B, et al. Materials Research Express, 2020, 7, 015708.
50 Cao L F, Park H S, Dodbiba G, et al. Magnetohydrodynamics, 2008, 44, 97.
51 Xiong M F, Gao Y X, Liu J. Journal of Magnetism and Magnetic Mate-rials, 2014, 354, 279.
52 Dodbiba G, Ono K, Park H S, et al. International Journal of Modern Physics B, 2011, 25, 947.
53 Fujita T, Park H S, Ono K, et al. Journal of Magnetism and Magnetic Materials, 2011, 323, 1207.
54 Park H S, Cao L F, Dodbiba G, et al. Journal of Physics: Conference Series, 2009, 149, 012108.
55 Yu M C, Bian X F, Wang T Q, et al. Soft Matter, 2017, 13, 6340.
56 Guo R, Sun X Y, Yuan B, et al. Advanced Science, 2019, 6, 1901478.
57 Yang C C, Bian X F, Qin J Y, et al. RSC Advances, 2014, 4, 59541.
58 Guo R, Wang X L, Chang H, et al. Advanced Engineering Materials, 2018, 20, 1800054.
59 He X K, Ni M Y, Wu J P, et al. Journal of Materials Science & Techno-logy, 2021, 92, 60.
60 Ren L, Sun S S, Casillas-Garcia G, et al. Advanced Materials, 2018, 30, 1802595.
61 Zhang Y X, Jiang S J, Hu Y L, et al. Nano Letters, 2022, 22, 2923.
62 Wang L, Rutkowski S, Si T Y, et al. Colloid and Interface Science Communications, 2022, 47, 100600.
63 Hong K, Choe M, Kim S, et al. Polymers, 2021, 13, 2407.
64 Hu L, Wang H Z, Wang X F, et al. ACS Applied Materials & Interfaces, 2019, 11, 8685.
65 Li F X, Kuang S L, Li X P, et al. Advanced Materials Technologies, 2019, 4, 1800694.
66 Ito R, Dodbiba G, Fujita T. International Journal of Modern Physics B, 2005, 19, 1430.
67 Yang C C, Liu Z, Yu M C, et al. Journal of Materials Science, 2020, 55, 13303.
68 Xu J Q, Pang H M, Gong X L, et al. iScience, 2021, 24, 102549.
69 Liu H, Li M X, Li Y H, et al. Soft Matter, 2018, 14, 3236.
70 Zhang C J, Yang Q, Yong J L, et al. International Journal of Extreme Manufacturing, 2021, 3, 025102.
71 Ma B, Xu C T, Chi J J, et al. Advanced Functional Materials, 2019, 29, 1901370.
72 Ma B, Xu C T, Cui L S, et al. ACS Applied Materials & Interfaces, 2021, 13, 5574.
73 Yun G L, Tang S Y, Sun S S, et al. Nature Communications, 2019, 10, 1300.
74 Liu M, Wang Y X, Kuai Y B, et al. Small, 2019, 15, 1905446.
75 Cao L X, Yu D H, Xia Z S, et al. Advanced Materials, 2020, 32, 2070136.
76 Wang B, Zhang B F, Tan Y Z, et al. Advanced Intelligent Systems, 2022, 4, 2200080.
77 Elbourne A, Cheeseman S, Atkin P, et al. ACS Nano, 2020, 14, 802.
78 Li F X, Kuang S L, Yang H, et al. In: Proceedings of the 2018 IEEE International Conference on Real-time Computing and Robotics. Kandima, Maldives, 2018, pp. 185.
79 Lu Y Y, Che Z X, Sun F Y, et al. ACS Applied Materials & Interfaces, 2021, 13, 5256.
80 Merhebi S, Mayyas M, Abbasi R, et al. ACS Applied Materials & Interfaces, 2020, 12, 20119.
81 Zhang J, Guo R, Liu J. Journal of Materials Chemistry B, 2016, 4, 5349.
82 Zhao R, Zhou G P, Yao H C, et al. arXiv, DOI:10.48550/arXiv.2111.14170
83 de Castro I A, Chrimes A F, Zavabeti A, et al. Nano Letters, 2017, 17, 7831.
84 Furriel F. Magnetocaloric ferrofluids. Master’s Thesis, Porto University, PT, 2021.
85 Lu Y Y, Zhou H, Mao H N, et al. ACS Applied Materials & Interfaces, 2020, 12, 48748.
86 Zhang M K, Zhang P J, Wang Q, et al. Journal of Materials Chemistry C, 2019, 7, 10331.
87 Zhu R Q, Li Z Y, Deng G, et al. Nano Energy, 2022, 92, 106700.
88 Lei Z K, Tan G G, Man Q K, et al. Materials Research Bulletin, 2021, 137, 111199.
89 Wang H Z, Yao Y Y, Wang X J, et al. ACS Omega, 2019, 4, 2311.
90 Zhou L Y, Ye J H, Fu J Z, et al. ACS Applied Materials & Interfaces, 2020, 12, 12068.
91 Zhu L F, Chen Y Z, Shang W H, et al. Journal of Materials Chemistry C, 2019, 7, 10166.
92 Deng F H, Nguyen Q K, Zhang P. Additive Manufacturing, 2020, 33, 101117.
93 Smith A, Bahl C R, Bjørk R, et al. Advanced Energy Materials, 2012, 2, 1288.
94 Romero Gómez J, Ferreiro Garcia R, De Miguel Catoira A, et al. Rene-wable and Sustainable Energy Reviews, 2013, 17, 74.
95 Dan’kov S Y, Tishin A M, Pecharsky V K, et al. Physical Review B, 1998, 57, 3478.
96 Franco V, Blázquez J S, Ipus J J, et al. Progress in Materials Science, 2018, 93, 112.
97 Iqbal A, Sambyal P, Koo C M. Advanced Functional Materials, 2020, 30, 2000833.
98 Yin F Q, Zhao Y C, Li Z C, et al. Journal of Functional Materials, 2022, 53(2), 2043(in Chinese).
尹富强, 赵玉辰, 李赵春, 等. 功能材料, 2022, 53(2), 2043.
99 Du B W, He S, Lian X K, et al. Journal of Functional Materials, 2023, 54(6), 6001(in Chinese).
杜炳文, 何帅, 廉晓克, 等. 功能材料, 2023, 54(6), 6001.
[1] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[2] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[3] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[4] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[5] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[6] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[7] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[8] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[9] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[10] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[11] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[12] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[13] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[14] 陈悦, 黄静, 朱子旭, 李华东. 面芯脱粘缺陷对复合材料夹芯圆柱壳屈曲特性影响分析[J]. 材料导报, 2024, 38(5): 23070044-6.
[15] 柯松, 陈卓坤, 艾诚, 李尧, 虢婷, 孙志平. 非晶合金薄膜的复合强韧化研究进展[J]. 材料导报, 2024, 38(5): 22090022-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed