Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 22100089-8    https://doi.org/10.11896/cldb.22100089
  高分子与聚合物基复合材料 |
聚三唑树脂/氮化硼纳米片复合材料的制备与性能
张雨1, 李瑜婧2, 万里强1,*, 黄发荣1, 刘坐镇3
1 华东理工大学材料科学与工程学院,特种功能高分子材料及相关技术教育部重点实验室,上海 210046
2 上海卫星装备研究所,上海 201100
3 华东理工大学华昌聚合物有限公司,上海 201100
Preparation and Properties of Polytriazole Resin/Boron Nitride Nanosheet Composites
ZHANG Yu1, LI Yujing2, WAN Liqiang1,*, HUANG Farong1, LIU Zuozhen3
1 Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 210046, China
2 Shanghai Satellite Equipment Research Institute, Shanghai 201100, China
3 Huachang Polymer Co., Ltd., East China University of Science and Technology, Shanghai 201100, China
下载:  全 文 ( PDF ) ( 23737KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用六方氮化硼(h-BN)、蔗糖和尿素以干法球磨的方式高产率制备了氨基和羟基功能化的氮化硼纳米片(BNNS-AH),对BNNS-AH进行了详细的表征,制备的BNNS-AH的厚度为1.5 nm,层数为4~6,平均直径约为1.5 μm,产率可达91.0%,在水中稳定的分散液浓度可达30 mg/mL。然后以共混的方法制备了聚三唑树脂/氮化硼纳米片复合材料(PTA树脂/BNNS-AH复合材料),并研究了BNNS-AH的添加量对PTA树脂/BNNS-AH复合材料热性能的影响。结果表明:与PTA纯树脂相比,复合材料的玻璃化转变温度(Tg)、质量失重5%时的温度(Td5)、导热系数均有明显提升,其中当BNNS-AH质量分数为3.0%时,复合材料的Tg达到243 ℃,提高了32 ℃;Td5达到362 ℃,提高了19 ℃;导热系数为0.33 W·m-1·K-1,提高了64.5%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张雨
李瑜婧
万里强
黄发荣
刘坐镇
关键词:  聚三唑树脂  复合材料  氮化硼纳米片  耐热性  导热性    
Abstract: Amino- and hydroxyl-functionalized boron nitride nanosheets (BNNS-AH) were prepared in high yield by dry ball milling using hexagonal boron nitride (h-BN), sucrose and urea. The thickness of the BNNS-AH is about 1.5 nm, the number of layers is 4—6, the average diameter is about 1.5 μm, the yield can reach 91.0%, the stable dispersion concentration in water can reach 30 mg/mL. Then polytriazole resin/boron nitride nanosheet (PTA resin/BNNS-AH)composites were prepared by blending method. And the effect of BNNS-AH addition on PTA resin/BNNS-AH composites was studied. The results show that compared with the pure PTA resin, the Tg, Td5 and thermal conductivity of the composite are significantly improved. When the mass fraction of BNNS-AH is 3.0wt%, the Tg of the composite reaches 243 ℃, an increase of 32 ℃; Td5 reaches 362 ℃, an increase of 19 ℃; the thermal conductivity is 0.33 W·m-1·K-1, an increase of 64.5%.
Key words:  polytriazole resin    composite material    boron nitride nanosheets    heat resistance    thermal conductivity
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  TQ325  
基金资助: 中央高校基本科研业务费专项资金(JKD01221701)
通讯作者:  *万里强,华东理工大学材料科学与工程学院副教授。2000年于南京理工大学高分子材料科学与工程专业本科毕业,2003年于浙江工业大学材料学专业硕士毕业,2007年于华东理工大学材料学专业博士毕业后在华东理工大学材料科学与工程学院工作至今;目前主要从事特种聚合物及其复合材料等研究。wanliqiang@163.com   
作者简介:  张雨,2018年6月、2022年7月分别于南京邮电大学和华东理工大学获得工学学士学位和硕士学位。主要研究领域为复合材料。
引用本文:    
张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
ZHANG Yu, LI Yujing, WAN Liqiang, HUANG Farong, LIU Zuozhen. Preparation and Properties of Polytriazole Resin/Boron Nitride Nanosheet Composites. Materials Reports, 2024, 38(8): 22100089-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22100089  或          https://www.mater-rep.com/CN/Y2024/V38/I8/22100089
1 Zhu H W, Wang M. Journal of Silicate, 2017, 45(8), 1043(in Chinese).
朱宏伟, 王敏. 硅酸盐学报, 2017, 45(8), 1043.
2 Zhang K L. Exfoliation modification and application of hexagonal boron nitride. Master’s Thesis, Jiangsu University of Science and Technology, China, 2018(in Chinese)
张凯丽. 六方氮化硼的剥离改性与应用. 硕士学位论文, 江苏科技大学, 2018.
3 Deepika, Li L H, Glushenkov A M, et al. Scientific Reports, 2014, 4, 7288.
4 Morishita T, Okamoto H. ACS Applied Materials & Interfaces, 2016, 8(40), 27064.
5 Pacile D, Meyer J C, Girit C O, et al. Applied Physics Letters, 2008, 92(13), 1257.
6 Donnay M, Tzavalas S, Logakis E. Composites Science and Technology, 2015, 110, 152.
7 Chen J, Huang X, Zhu Y, et al. Advanced Functional Materials, 2017, 27(5), 1604754.
8 Orlando F, Lacovig P, Omiciuolo L, et al. ACS Nano, 2014, 8(12), 12063.
9 Han G, Zhao X, Feng Y, et al. Chemical Engineering Journal, 2021, 407, 127099.
10 Cui Z, Oyer A J, Glover A J, et al. Small, 2014, 10(12), 2352.
11 Bashir A, Maqbool M, Lv R C, et al. Composites Part B-Engineering, 2021, 218(29), 157.
12 Han Y X, Shi X T, Yang X T, et al. Composites Science and Technology, 2020, 187(15), 1678.
13 Hu Y H, Liu S L, Tong Q Y, et al. Organic Chemistry, 2004, 24(10), 1228(in Chinese).
扈艳红, 刘世领, 仝钦宇, 等. 有机化学, 2004, 24(10), 1228.
14 Baldwin M G, Johnson K E, Lovinger J A, et al. Journal of Polymer Science Part C: Polymer Letters 1967, 5(9), 803
15 Eckell A, George M V, Huisgen R, et al. Chemische Berichte, 1977, 110(2), 578.
16 Johnson K E, Lovinger J A, Parker C O, et al. Journal of Polymer Science Part C: Polymer Letters, 1966, 4(12), 977.
17 Wu C W, Du L, Tang L, et al. Insulation Materials, 2013, 46(4), 1(in Chinese).
吴长伟, 杜磊, 唐磊, 等. 绝缘材料, 2013, 46(4), 1.
18 Lei W, Mochalin V N, Liu D, et al. Nature Communication, 2015, 6(81), 8849.
19 Vega-Baudrit J, Navarro-Banon V, Vazquez P, et al. International Journal of Adhesion and Adhesives, 2006, 26(5), 378.
20 Ab Rahman I, Padavettan V. Journal of Nanomaterials, 2012, 2012(25), 3367.
21 Sainsbury T, Ikuno T, Okawa D, et al. Journal of Physical Chemistry C, 2007, 111(35), 12992.
[1] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[2] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[3] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[4] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[5] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[6] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[7] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[8] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[9] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[10] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[11] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[12] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[13] 陈悦, 黄静, 朱子旭, 李华东. 面芯脱粘缺陷对复合材料夹芯圆柱壳屈曲特性影响分析[J]. 材料导报, 2024, 38(5): 23070044-6.
[14] 柯松, 陈卓坤, 艾诚, 李尧, 虢婷, 孙志平. 非晶合金薄膜的复合强韧化研究进展[J]. 材料导报, 2024, 38(5): 22090022-9.
[15] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed