Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 22100107-10    https://doi.org/10.11896/cldb.22100107
  高分子与聚合物基复合材料 |
3D打印聚乳酸的改性研究与应用进展
郑思铭1, 李蔚1,*, 杨函瑞1, 陈松2, 魏取福1,*
1 江南大学纺织科学与工程学院,江苏 无锡 214122
2 江苏苏丝丝绸股份有限公司,江苏 宿迁 223800
Research Progress in the Modification and Applications of 3D Printed Polylactic Acid
ZHENG Siming1, LI Wei1,*, YANG Hanrui1, CHEN Song2, WEI Qufu1,*
1 College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
2 Jiangsu Susi Silk Joint Stock Co., Suqian 223800, Jiangsu, China
下载:  全 文 ( PDF ) ( 7754KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚乳酸(PLA)是一种生物可降解热塑性聚酯,是极有前景的生物基可降解材料之一。PLA具有优异的力学性能、良好的可塑性及生物相容性,是理想的3D打印材料。3D打印PLA材料在多个领域尤其是医用方面有巨大的潜力。然而,PLA固有的脆性和较差的耐热、耐水解性限制了它的应用范围。近年来,学者对3D打印PLA的改性进行了大量研究。本文归纳了3D打印PLA的研究进展,分别从共混改性、复合改性、立构复合、涂层法和化学改性这几方面讨论了提高材料性能的原理与方法,并对相关性能进行了分析对比。共混法虽然简单易操作,但不利于材料的均匀化,且有时改性效果不够明显。复合改性向PLA中加入碳基添加剂、金属添加剂、植物纤维等填料,改性同时可赋予3D打印PLA更多功能,但易出现界面不相容等问题。此外,还有立构复合、涂层法、化学改性等新方法具有重要的研究价值。在此基础上,结合目前3D打印PLA在实际应用中的发展情况,分析了3D打印PLA仍存在的问题,对3D打印PLA未来的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑思铭
李蔚
杨函瑞
陈松
魏取福
关键词:  聚乳酸  3D打印  力学性能  热性能  耐水解性    
Abstract: Polylactic acid (PLA) is a biodegradable thermoplastic polyester, which is one of the most promising biodegradable materials. PLA is an ideal 3D printing material with excellent mechanical properties, good plasticity, and biocompatibility. 3D printed PLA materials exhibit high potential in various fields, particularly in biomedical and tissue engineering. However, the inherent brittleness, poor heat-resistance, and inferior hydrolysis resistance limit the applications of PLA materials. Recently, scholars have conducted a number of studies to improve properties of 3D printed PLA. This article summarizes the research progress of 3D printing of PLA materials, including blending, composite preparation, stereo-comple-xation, coating and chemical modification. Major principles and protocols of these methods to improve properties of PLA are discussed, with detailed analysis and comparison of relevant properties. Although blending is easy to operate, it is not conducive to the homogenization of PLA materials, sometimes with limited improvement in properties. Carbon based additives, metal additives, plant fibers, and other fillers provide 3D printed PLA multiple functions. However, interfacial incompatibility remains a problem in composite preparation. Furthermore, new methods, such as stereo-complexation, coating, and chemical modification are also valuable methods to be discovered. Considering the development requirements of 3D printed PLA in practical applications, existing problems in current PLA materials are systematically analyzed to serve as an access threshold for quality 3D printed PLA to be considered in real applications.
Key words:  polylactic acid    3D printing    mechanical property    thermal property    hydrolysis resistance
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  TQ323.41  
基金资助: 中央高校基本科研业务费专项资金资助(JUSRP51907A); 无锡市科技发展资金基础研究项目(K20221014); 江南大学基本科研计划-青年基金(JUSRP12030); 江苏苏丝丝绸股份有限公司产学研
通讯作者:  *李蔚,江南大学纺织科学与工程学院副教授、硕士研究生导师。2008年东华大学高分子材料科学与工程专业本科毕业,2011年获美国内布拉斯加大学林肯分校生物系统工程硕士学位,2019年获美国内布拉斯加大学林肯分校纺织科学博士学位,同年赴江南大学纺织科学与工程学院任教,兼江苏格罗瑞节能科技有限公司科技副总。目前主要从事绿色高分子的资源化再生及其在纺织和其他领域应用的研究工作。发表论文15余篇,包括Bioresource Technology、ACS Sustainable Chemistry & Engineering、Journal of Cleaner Production、Journal of Materials Chemistry A、Industrial Crops and Products等。wli31@jiangnan.edu.cn
魏取福,江南大学纺织科学与工程学院博士、教授、博士研究生导师。2004年毕业于英国Heriot-Watt大学,获得博士学位,2010年美国哈佛大学访问学者。发表学术论文300篇以上,其中SCI检索论文200多篇,EI检索论文20多篇,CSCD论文100多篇,获国家发明专利10余项。主持和承担国家重点研发计划、国家863计划项目、国家自然科学基金、教育部重点项目、江苏省产学研等项目10余项,获教育部自然科学二等奖、江苏省教学成果一等奖、纺织工业协会教学成果一等奖等科研教学奖励。主编英文专著Surface Modification of Textiles、Functional Nanofibres and Their Applications,参编国家“十一五”规划教材《纤维材料改性》。qfwei@jiangnan.edu.cn   
作者简介:  郑思铭,2021年6月于江南大学获得工学学士学位。现为江南大学纺织科学与工程学院硕士研究生,在魏取福教授与李蔚副教授的指导下进行研究。目前主要研究领域为聚乳酸及其相关材料。
引用本文:    
郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
ZHENG Siming, LI Wei, YANG Hanrui, CHEN Song, WEI Qufu. Research Progress in the Modification and Applications of 3D Printed Polylactic Acid. Materials Reports, 2024, 38(8): 22100107-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22100107  或          https://www.mater-rep.com/CN/Y2024/V38/I8/22100107
1 Yang Z Z,Kong Z W,Wu G M,et al.Material Reports,2021,35(13),13177(in Chinese).
杨兆哲,孔振武,吴国民,等.材料导报,2021,35(13),13177.
2 Du G Y,Duan Y,Yuan Q,et al.Journal of Functional Materials,2022,53(3),3162(in Chinese).
杜国勇,段艺,袁巧,等.功能材料,2022,53(3),3162.
3 Yang J,Jia S K,Guo X,et al.Engineering Plastics Application,2018(2),132(in Chinese).
杨锦,贾仕奎,郭香,等.工程塑料应用,2018(2),132.
4 Zhong Y H,Chen S H,Ye X,et al.Science & Technology in Chemical Industry,2022,30(3),15(in Chinese).
钟燕辉,陈绍军,叶旋,等.化工科技,2022,30(3),15.
5 Huang C,Chen Z X,Gong K,et al.China Plastics Industry,2020,48(4),103(in Chinese).
黄程,陈志新,龚克,等.塑料工业,2020,48(4),103.
6 Komal U K,Kasaudhan B K,Singh I.Journal of Materials Engineering and Performance,2021,30(9),6522.
7 Zhang Y B,Wang L F,Hu H,et al.Materials For Mechanical Enginee-ring,2017,41(9),57(in Chinese).
张云波,王联凤,胡浩,等.机械工程材料,2017,41(9),57.
8 Andrzejewski J,Cheng J,Anstey A,et al.Acs Sustainable Chemistry & Engineering,2020,8(17),6576.
9 Dang H C,Lei C X,Liu Z Z,et al.Engineering Plastics Applications,2021,49(1),13(in Chinese).
党海春,雷春兴,刘占洲,等.工程塑料应用,2021,49(1),13.
10 Ou-Yang Q,Guo B,Xu J.ACS Omega,2018,3(10),14309.
11 Kaygusuz B,Ozerinc S.Journal of Applied Polymer Science,2019,136(43),8.
12 Miao J F,He X T,Li F,et al.Engineering Plastics Application,2018,46(2),12(in Chinese).
苗剑飞,何雪涛,李飞,等.工程塑料应用,2018,46(2),12.
13 Rasselet D,Caro-Bretelle A S,Taguet A,et al.Materials,2019,12(3),18.
14 Zu Y,Ren Y N,Hu J.China Plastics,2020,34(7),8(in Chinese).
祖钰,任亚男,胡晶.中国塑料,2020,34(7),8.
15 Zhang Y,He J M,Zhou Q,et al.Engineering Plastics Application,2023,51(10),173(in Chinese).
张禹,何继敏,周麒,等.工程塑料应用,2023,51(10),173.
16 Gao Y,Li Y,Hu X R,et al.Polymers,2017,9(12),15.
17 Saharudin M S,Hajnys J,Kozior T,et al.Polymers,2021,13(11),17.
18 Valvez S,Santos P,Parente J M,et al.Procedia Structural Integrity,2020,25,394.
19 Chaudhry F N,Butt S I,Mubashar A,et al.Journal of Thermoplastic Composite Materials,2022,35(3),352.
20 Li Y H,Gao S Y,Dong R M,et al.Journal of Materials Engineering and Performance,2018,27(2),492.
21 Liu X J,Miao J F,Li F,et al.Engineering Plastics Application,2017,45(9),5(in Chinese).
刘晓军,苗剑飞,李飞,等.工程塑料应用,2017,45(9),5.
22 Wang Y Q,Liu Z G,Gu H W,et al.Journal of Materials Research,2019,34(20),3412.
23 Yang L P,Li S J,Zhou X,et al.Synthetic Metals,2019,253,122.
24 Kholkhoev B C,Buinov A S,Kozlova M N,et al.Russian Journal of Applied Chemistry,2018,91(3),392.
25 Yi D H,Feng Y H,Zhang J F,et al.Material Reports,2020,34(9),9086(in Chinese).
仪登豪,冯英豪,张锦芳,等.材料导报,2020,34(9),9086.
26 Patanwala H S,Hong D T,Vora S R,et al.Polymer Composites,2018,39,E1060.
27 Shi S H,Dai M Y,Tao X Y,et al.Chemical Engineering Journal,2022,450.
28 Caminero M A,Chacon J M,Garcia-Plaza E,et al.Polymers,2019,11(5),22.
29 Spinelli G,Kotsilkova R,Ivanov E,et al.Nanomaterials,2020,10(1),16.
30 Bayraktar I,Doganay D,Coskun S,et al.Composites Part B-Engineering,2019,172,671.
31 Lucie S Z,Ditaa M,Karelb S D.Materials Testing,2020,62(7),727.
32 Yang F,Zeng J,Long H,et al.Polymers,2020,12(3),621.
33 Vakharia V S,Kuentz L,Salem A,et al.Polymers,2021,13(20),16.
34 Alam F,Shukla V R,Varadarajan K M,et al.Journal of the Mechanical Behavior of Biomedical Materials,2020,103,9.
35 Gao Y,Li L M,Kong X W,et al.Plastics,2022,51(3),73(in Chinese).
高尧,李玲梦,孔祥威,等.塑料,2022,51(3),73.
36 Xiong W,Zhang S W,Lu S,et al.Forestry Machinery & Woodworking Equipment,2022,50(1),12(in Chinese).
熊伟,张苏婉,卢嵩,等.林业机械与木工设备,2022,50(1),12.
37 Xiao X L,Chevali V S,Song P A,et al.Composites Science and Technology,2019,184,8.
38 He H,Hao S,Zhang J W,et al.China Powder Science and Technology,2022,28(1),95(in Chinese).
何惠,郝飒,张嘉文,等.中国粉体技术,2022,28(1),95.
39 Aumnate C,Soatthiyanon N,Makmoon T,et al.Cellulose,2021,28(13),8509.
40 Xiao J L,Mo J B,Long H B,et al.Journal of Cellulose Science and Technology,2022,30(1),25(in Chinese).
肖嘉林,莫建斌,龙海波,等.纤维素科学与技术,2022,30(1),25.
41 Faludi G,Hari J,Renner K,et al.Composites Science and Technology,2013,77,67.
42 Ikada Y,Jamshidi K,Tsuji H,et al. Macromolecules,1987,20(4),904.
43 Yang J,Li W,Mu BN,et al.International Journal of Biological Macromo-lecules,2021,193,247.
44 Yang J,Li W,Mu B,et al.Polymer,2022,242,124590.
45 Yang J,Li W,Mu B,et al.International Journal of Biological Macromolecules,2022,202,482.
46 Yang R,Wu J,Zhen J,et al.Micro & Nano Letters,2018,13(11), 1604.
47 Xu D M,Zhang L,Liu Y.Engineering Plastics Applications,2021,49(11),68(in Chinese).
徐冬梅,张琳,刘洋.工程塑料应用,2021,49(11),68.
48 Brzakalski D,Sztorch B,Frydrych M,et al.Molecules,2020,25(24), 5882.
49 Kumar R,Singh R,Singh M,et al.Journal of Thermoplastic Composite Materials,2022,35(6),799.
50 Dominguez-Alfaro A,Gabirondo E,Alegret N,et al.Macromolecular Rapid Communications,2021,42(12), e2100100.
51 Pajarito B B,Cayabyab C A L,Costales P A C,et al.Journal of Coatings Technology and Research,2019,16(4),1133.
52 Vicente C M S,Fernandes J,Reis L,et al.Frattura Ed Integrita Strutturale,2019, 13,748.
53 Zhao X G,Hwang K J,Lee D,et al.Applied Surface Science,2018,441,381.
54 Qin R B,Wurikaixi A Y T,Teng Y.Manufacturing Technology & Machine Tool,2020(2),40(in Chinese).
秦瑞冰,乌日开西·艾依提,滕勇.制造技术与机床,2020(2),40.
55 Fan Z W,Zhao X Y,Qiu S,et al.Journal of Materials Engineering,2021,49(4),135(in Chinese).
范泽文,赵新宇,邱帅,等.材料工程,2021,49(4),135.
56 Liu J Y,Wang Y,Ma C L,et al.Journal of Xinjiang Medical University,2021,44(2),155(in Chinese).
刘佳怡,王媛,马春丽,等.新疆医科大学学报,2021,44(2),155.
57 Zhang X C,Wu W.International Journal of Stomatology,2020,47(6),677(in Chinese).
张心驰,吴炜.国际口腔医学杂志,2020,47(6),677.
58 Tang F,Xiong J W,Xia K,et al.Engineering Plastics Applications,2022,50(8),66(in Chinese).
唐锋,熊建武,夏凯,等.工程塑料应用,2022,50(8),66.
59 Zhao S L,Zhu N N,Tang L,et al.Equipment for Electronic Products Ma-nufacturing,2022,51(2),17(in Chinese).
赵思龙,朱楠楠,唐磊,等.电子工业专用设备,2022,51(2),17.
60 He J L,Sun D C,Cao Y X,et al.Engineering Plastics Application,2017,45(6),5(in Chinese).
何军亮,孙东成,曹艳霞,等.工程塑料应用,2017,45(6),5.
61 Wu Q D,Tang X J,Li P,et al.Journal of Central South University of Fo-restry & Technology,2021,41(9),166(in Chinese).
吴庆定,唐小杰,李佩,等.中南林业科技大学学报,2021,41(9),166.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[6] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[7] 刘超, 蒙毅升, 武怡文, 刘化威. 3D打印再生砂浆早期流变性能及结构经时演化研究[J]. 材料导报, 2024, 38(9): 22100157-8.
[8] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[9] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[10] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[11] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[12] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[13] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[14] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[15] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed