Behavior and Mechanism of Microwave Absorbing and Electromagnetic Interference Shielding of Ti3C2Tx/Fe3O4 Nanocomposites
LI Yuexia1, WU Meng1, JI Ziying1, LIU Lu1, YING Guobing1,*, XU Pengfei2
1 College of Mechanics and Materials, Hohai University, Nanjing 211100, China 2 Institute of Marine Equipment and Underwater Technology, Hohai University, Nanjing 211100, China
Abstract: In the field of electromagnetic interference shielding, ferrite is a commonly used coated microwave absorber, but there are some shortcomings in Fe3O4, the leading of ferrite. Herein bud-like Ti3C2Tx/Fe3O4 composites were successfully prepared by freeze-drying. The multiple reflections of electromagnetic waves caused by bud-like structure, interface polarization and electromagnetic coupling result in a high microwave absorption performance of the Ti3C2Tx/Fe3O4 composite. When the frequency is 6.74 GHz, the minimum reflection loss is -51.41 dB with the corresponding matching thickness of 2.8 mm, which indicates that it has 99.999 28% absorption of electromagnetic wave. The Ti3C2Tx/Fe3O4 composites with bud-like structure exhibit superior microwave absorbing properties which demonstrate a promising application in electromagnetic interference shielding field.
1 Wonil R, Ji S, Jeongho P, et al. IEEE Communications Magazine, 2014, 52(2), 106. 2 Hamid R, Cetintas M, Karacadag H, et al. In: 2003IEEE International Symposium on Electromagnetic Compatibility. Boston, 2003, pp. 1211. 3 Feng W. Synthesis of Ti3C2 MXene and its microwave absorbing properties. Ph.D. Thesis, China Academy of Engineering Physics, China, 2018 (in Chinese). 冯万林. Ti3C2 MXene的合成及其吸波性能的研究.博士学位论文,中国工程物理研究院,2018. 4 Zhao J, Yao Y Q,Yang X H. Acta Materiae Compositae Sinica, 2020, 37(11), 2684 (in Chinese). 赵佳,姚艳青,杨煊赫,等. 复合材料学报, 2020,37(11),2684 5 Liu Q C. Synthesis and microwave absorption properties of micro/nano-structred Fe3O4 composite. Ph.D. Thesis, University of Science and Technology of China, China,2013 (in Chinese). 刘强春. 微纳结构四氧化三铁复合材料的制备及吸波性能研究. 博士学位论文,中国科学技术大学, 2013. 6 Wang Y, Li Y, Qiu Z, et al. Journal of Materials Chemistry A, 2018, 6(24), 11189. 7 Wu M, Rao L, Zhang J F, et al. Acta Materiae Compositae Sinica, 2022, 39(3), 942 (in Chinese). 吴梦,饶磊,张建峰,等. 复合材料学报, 2022, 39(3), 942. 8 Liu L, Ying G, Zhao Y, et al. Polymers, 2021, 13, 1820. 9 Feng A, Yu Y, Wang Y, et al. Materials & Design, 2017, 114, 161. 10 Ghidiu M, Lukatskaya M R, Zhao M, et al. Nature, 2014, 516(7529),78. 11 Wang Z, Cheng Z, Fang C, et al. Composites Part A: Applied Science and Manufacturing, 2020, 136, 105956. 12 Han M, Yin X, Wu H, et al. ACS Applied Materials & Interfaces, 2016, 8(32), 21011. 13 Mao S, Yong Z, Peng H, et al. Chemical Engineering Journal, 2019, 359, 1265. 14 Lin H, Wang X, Yu L, et al. Nano Letters,2016, 17(1), 384. 15 Shekhirev M, Shuck C E, Sarycheva A, et al. Progress in Materials Science, 2021, 120, 100757. 16 Wang Y, Gao X, Zhang L, et al. Applied Surface Science, 2019, 480, 830. 17 Cui Y, Yang K, Wang J, et al. Carbon, 2021, 172, 1. 18 Qing Y, Zhou W, Luo F, et al. Ceramics International, 2016, 42(14), 16412. 19 Bao W, Tang X, Guo X, et al. Joule, 2018, 2(4), 778. 20 Zhang K, Ying G, Liu L,et al. Materials, 2019,12(1), 188. 21 Wang J F, Kang H, Cheng Z J, et al. Journal of Materials Engineering, 2021, 49(6), 14(in Chinese) 王敬枫,康辉,成中军,等. 材料工程,2021,49(6),14. 22 Liu J, Zhang H, Sun R, et al. Advanced Materials, 2017, 29(38), 1702367. 23 Li M, Han M, Zhou J, et al. Advanced Electronic Materials, 2018, 4, 1700617. 24 Marcin K, Marek S R, John G H, et al. In:2017 IEEE Energy Conversion Congress and Exposition (ECCE). Cincinnati, 2017, pp, 2350. 25 Niu H H, Tu X Y, Zhang S, et al. Chemical Engineering Journal, 2022, 446, 137260. 26 Zhang X, Wang H, Hu R, et al. Applied Surface Science, 2019, 484, 383. 27 Xie A M, Zhang K, Sun M X, et al. Materials & Design, 2018, 154, 192. 28 Zhou W C,Hu X J, Sun C H, et al. Polymers Advanced Technologies, 2013, 25, 83.