Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 23020143-7    https://doi.org/10.11896/cldb.23020143
  无机非金属及其复合材料 |
Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制
李月霞1, 吴梦1, 纪子影1, 刘璐1, 应国兵1,*, 徐鹏飞2
1 河海大学力学与材料学院,南京 211100
2 河海大学海工装备与水下技术研究所,南京 211100
Behavior and Mechanism of Microwave Absorbing and Electromagnetic Interference Shielding of Ti3C2Tx/Fe3O4 Nanocomposites
LI Yuexia1, WU Meng1, JI Ziying1, LIU Lu1, YING Guobing1,*, XU Pengfei2
1 College of Mechanics and Materials, Hohai University, Nanjing 211100, China
2 Institute of Marine Equipment and Underwater Technology, Hohai University, Nanjing 211100, China
下载:  全 文 ( PDF ) ( 12394KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在电磁屏蔽领域,铁氧体是常用的涂覆型吸波剂,但以Fe3O4为首的铁氧体存在一些不足。本研究采用冷冻干燥的方法成功制备了花苞状Ti3C2Tx/Fe3O4复合材料,Ti3C2Tx/Fe3O4复合材料的花苞状结构对电磁波的多重反射、界面极化和电磁耦合作用等使复合材料具有更好的微波吸收性能。当频率为6.74 GHz时,最小反射损耗达到-51.41 dB,对应的匹配厚度为2.8 mm,这意味着它可以吸收99.999 28%的电磁波。本研究中特殊的花苞状Ti3C2Tx/Fe3O4复合材料表现出优异的吸波性能,在电磁屏蔽领域具有良好的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李月霞
吴梦
纪子影
刘璐
应国兵
徐鹏飞
关键词:  MXene Ti3C2Tx/Fe3O4复合材料  吸波  电磁屏蔽  吸波剂    
Abstract: In the field of electromagnetic interference shielding, ferrite is a commonly used coated microwave absorber, but there are some shortcomings in Fe3O4, the leading of ferrite. Herein bud-like Ti3C2Tx/Fe3O4 composites were successfully prepared by freeze-drying. The multiple reflections of electromagnetic waves caused by bud-like structure, interface polarization and electromagnetic coupling result in a high microwave absorption performance of the Ti3C2Tx/Fe3O4 composite. When the frequency is 6.74 GHz, the minimum reflection loss is -51.41 dB with the corresponding matching thickness of 2.8 mm, which indicates that it has 99.999 28% absorption of electromagnetic wave. The Ti3C2Tx/Fe3O4 composites with bud-like structure exhibit superior microwave absorbing properties which demonstrate a promising application in electromagnetic interference shielding field.
Key words:  MXene Ti3C2Tx/Fe3O4 composites    wave absorption    electromagnetic interference (EMI) shielding    microwave absorber
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  TB34  
基金资助: 国家自然科学基金(11872171);江苏省海洋科技创新项目(HY2018-15)
通讯作者:  * 应国兵,河海大学力学与材料学院教授、博士研究生导师。2005年本科毕业于哈尔滨工程大学材料科学与工程专业;2008年于哈尔滨工程大学材料物理化学专业获硕士学位,2011年哈尔滨工业大学材料学专业博士毕业后到河海大学工作至今。目前主要从事特种复合材料与结构方面研究。发表学术论文80余篇。yinggb2010@126.com   
作者简介:  李月霞,2021年6月本科毕业于河海大学,获工学学士学位。现为河海大学力学与材料学院硕士研究生,在应国兵教授的指导下进行研究。目前主要研究领域为MXene复合材料的制备与电磁屏蔽性能。
引用本文:    
李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
LI Yuexia, WU Meng, JI Ziying, LIU Lu, YING Guobing, XU Pengfei. Behavior and Mechanism of Microwave Absorbing and Electromagnetic Interference Shielding of Ti3C2Tx/Fe3O4 Nanocomposites. Materials Reports, 2024, 38(9): 23020143-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23020143  或          https://www.mater-rep.com/CN/Y2024/V38/I9/23020143
1 Wonil R, Ji S, Jeongho P, et al. IEEE Communications Magazine, 2014, 52(2), 106.
2 Hamid R, Cetintas M, Karacadag H, et al. In: 2003IEEE International Symposium on Electromagnetic Compatibility. Boston, 2003, pp. 1211.
3 Feng W. Synthesis of Ti3C2 MXene and its microwave absorbing properties. Ph.D. Thesis, China Academy of Engineering Physics, China, 2018 (in Chinese).
冯万林. Ti3C2 MXene的合成及其吸波性能的研究.博士学位论文,中国工程物理研究院,2018.
4 Zhao J, Yao Y Q,Yang X H. Acta Materiae Compositae Sinica, 2020, 37(11), 2684 (in Chinese).
赵佳,姚艳青,杨煊赫,等. 复合材料学报, 2020,37(11),2684
5 Liu Q C. Synthesis and microwave absorption properties of micro/nano-structred Fe3O4 composite. Ph.D. Thesis, University of Science and Technology of China, China,2013 (in Chinese).
刘强春. 微纳结构四氧化三铁复合材料的制备及吸波性能研究. 博士学位论文,中国科学技术大学, 2013.
6 Wang Y, Li Y, Qiu Z, et al. Journal of Materials Chemistry A, 2018, 6(24), 11189.
7 Wu M, Rao L, Zhang J F, et al. Acta Materiae Compositae Sinica, 2022, 39(3), 942 (in Chinese).
吴梦,饶磊,张建峰,等. 复合材料学报, 2022, 39(3), 942.
8 Liu L, Ying G, Zhao Y, et al. Polymers, 2021, 13, 1820.
9 Feng A, Yu Y, Wang Y, et al. Materials & Design, 2017, 114, 161.
10 Ghidiu M, Lukatskaya M R, Zhao M, et al. Nature, 2014, 516(7529),78.
11 Wang Z, Cheng Z, Fang C, et al. Composites Part A: Applied Science and Manufacturing, 2020, 136, 105956.
12 Han M, Yin X, Wu H, et al. ACS Applied Materials & Interfaces, 2016, 8(32), 21011.
13 Mao S, Yong Z, Peng H, et al. Chemical Engineering Journal, 2019, 359, 1265.
14 Lin H, Wang X, Yu L, et al. Nano Letters,2016, 17(1), 384.
15 Shekhirev M, Shuck C E, Sarycheva A, et al. Progress in Materials Science, 2021, 120, 100757.
16 Wang Y, Gao X, Zhang L, et al. Applied Surface Science, 2019, 480, 830.
17 Cui Y, Yang K, Wang J, et al. Carbon, 2021, 172, 1.
18 Qing Y, Zhou W, Luo F, et al. Ceramics International, 2016, 42(14), 16412.
19 Bao W, Tang X, Guo X, et al. Joule, 2018, 2(4), 778.
20 Zhang K, Ying G, Liu L,et al. Materials, 2019,12(1), 188.
21 Wang J F, Kang H, Cheng Z J, et al. Journal of Materials Engineering, 2021, 49(6), 14(in Chinese)
王敬枫,康辉,成中军,等. 材料工程,2021,49(6),14.
22 Liu J, Zhang H, Sun R, et al. Advanced Materials, 2017, 29(38), 1702367.
23 Li M, Han M, Zhou J, et al. Advanced Electronic Materials, 2018, 4, 1700617.
24 Marcin K, Marek S R, John G H, et al. In:2017 IEEE Energy Conversion Congress and Exposition (ECCE). Cincinnati, 2017, pp, 2350.
25 Niu H H, Tu X Y, Zhang S, et al. Chemical Engineering Journal, 2022, 446, 137260.
26 Zhang X, Wang H, Hu R, et al. Applied Surface Science, 2019, 484, 383.
27 Xie A M, Zhang K, Sun M X, et al. Materials & Design, 2018, 154, 192.
28 Zhou W C,Hu X J, Sun C H, et al. Polymers Advanced Technologies, 2013, 25, 83.
[1] 蒋曜年, 刘欢, 钟镇涛, 何泽乾, 毛卫国, 戴翠英, 张有为, 刘平桂. SiCN@Fe复合吸波涂层高温原位拉伸测试分析[J]. 材料导报, 2025, 39(3): 23050156-5.
[2] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[3] 吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
[4] 苏秉尧, 王斌, 侯林伟, 王恒, 赵建伟, 贺辛亥, 袁亚蓉. 柔性碳/三聚氰胺复合泡沫的电磁屏蔽与传感特性[J]. 材料导报, 2024, 38(5): 22070159-7.
[5] 阮心怡, 张恒宇, 王妮, 肖红. 周期结构电磁超材料吸波体的设计及最新进展[J]. 材料导报, 2024, 38(3): 22090223-11.
[6] 张昊, 黄宗玥, 张妍彬, 魏剑. (Si0.2Ti0.2Nb0.2Ta0.2V0.2)C高熵陶瓷的低温制备及吸波性能[J]. 材料导报, 2024, 38(3): 22050232-6.
[7] 李华伟, 王倩, 王荣, 刘飞宇, 谢汶桦, 刘锋. 复合吸波剂增强钢渣-水泥基双层结构吸波材料的制备[J]. 材料导报, 2024, 38(23): 23080003-8.
[8] 钟镇涛, 洪森, 邓妍, 何泽乾, 戴翠英, 毛卫国, 张有为, 刘平桂. 热处理对FeSi合金粉末/有机硅树脂吸波涂层微观结构和力学性能的影响[J]. 材料导报, 2024, 38(20): 23050106-7.
[9] 陶德昌, 文鑫, 李雪丽, 严坤, 赵青华, 夏明, 杨晨光, 王栋. 超级柔韧性和优异电磁屏蔽性能的PVA-co-PE纳米纤维覆铜膜[J]. 材料导报, 2024, 38(14): 23030255-8.
[10] 赵静, 王选仓, 辛磊, 宋子豪, 任俊儒, 杨朝山. 用于微波除冰的吸波骨料选择及路面吸波功能层设计[J]. 材料导报, 2024, 38(12): 22090275-8.
[11] 邬志超, 倪爱清, 陈俊磊, 王继辉. 吸波预浸料树脂及其复合材料的综合性能研究[J]. 材料导报, 2024, 38(10): 23010035-10.
[12] 林立海, 李处森, 颜雨坤, 白炜琛, 刘利冉, 张劲松. 热解碳泡沫材料吸波机理研究[J]. 材料导报, 2024, 38(1): 22050338-7.
[13] 邓妍, 洪森, 曹湘杰, 蒋曜年, 戴翠英, 毛卫国, 张有为, 刘平桂. 热处理对羰基铁基吸波涂层微观结构和力学性能的影响[J]. 材料导报, 2024, 38(1): 22040113-6.
[14] 付宁宁, 谢绍兴, 周禄军, 丁亚萍, 孟凡彬. 电纺碳纳米纤维/石墨烯气凝胶薄膜的可控制备与电磁屏蔽性能研究[J]. 材料导报, 2023, 37(24): 22090180-5.
[15] 李宇, 王建敏, 张弦, 欧阳顺利. 高附加值煤气化渣基材料开发研究进展[J]. 材料导报, 2023, 37(23): 22040354-12.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed