Abstract: Seeking electromagnetic shielding materials with good physical properties is one of the hot spots in electromagnetic wave absorption. High entropy ceramics have the advantages of high temperature thermal stability and good oxidation resistance, but the high synthesis temperature and lack of research on wave-absorbing properties limit their development in the field of high-temperature wave absorption. In this work, polycrystalline rock salt type (Si0.2Ti0.2Nb0.2Ta0.2V0.2)C high entropy carbide ceramics were synthesized by molten salt method, and their phase composition, microscopic morphology and wave absorption properties were investigated. The results show that the diffraction peak of the sample shar-pened gradually with the increase of the reaction temperature and the absorption performance improved significantly. When the reaction temperature is 1 500 ℃, the lowest reflection loss reaches -34.68 dB at 3.72 GHz. Compared with the reported high-entropy carbide ceramics, the coa-ting thickness is reduced by 13.3% (1.5 mm to 1.3 mm) for the same effective absorption bandwidth (2.3 GHz), and the dielectric loss mainly comes from polarization loss and conductivity loss. The high-entropy carbide ceramics prepared in this paper can provide a new avenue for research on the preparation of new environmentally adapted, high-temperature resistant and shock-resistant high-performance single-phase absor-bing materials.
1 Kumar R, Sahoo S, Joanni E, et al. Carbon, 2021, 177, 304. 2 Soares B G, Barra G M O, Indrusiak T. Journal of Composites Science, 2021, 5(7), 173. 3 Houbi A, Aldashevich Z A, Atassi Y, et al. Journal of Magnetism and Magnetic Materials, 2021, 529, 167839. 4 Ren M, Li F, Gao P, et al. Construction Building Materials, 2020, 263, 120670. 5 Adebayo L L, Soleimani H, Yahya N, et al. Ceramics International, 2020, 46(2), 1249. 6 Cui L, Han X, Wang F, et al. Journal of Materials Science, 2021, 56(18), 10782. 7 Zhang M J, Li X, Qiao S S, et al. Materials Reports, 2021, 35(8), 8049 (in Chinese). 张梦杰, 李翔, 乔师帅, 等. 材料导报, 2021, 35(8), 8049. 8 Qiao S S, Wang Y, Jia Z Y, et al. Materials Reports, 2021, 35(18), 18059 (in Chinese). 乔师帅, 王元, 贾朝阳, 等. 材料导报, 2021, 35(18), 18059. 9 Rost C M, Sachet E, Borman T, et al. Nature Communications, 2015, 6(1), 8485. 10 Oses C, Toher C, Curtarolo S. Nature Reviews Materials, 2020, 5(4), 295. 11 Xie H X, Xiang H Z, Ma R Q, et al. Materials Reports, 2022, 36(6), 61 (in Chinese). 谢鸿翔, 项厚政, 马瑞奇, 等. 材料导报, 2022, 36(6), 61. 12 Ranganathan S. Current Science, 2003, 85(10), 1404. 13 Chen H, Zhao B, Zhao Z, et al. Journal of Materials Science & Technology, 2020, 47, 216. 14 Zhang W, Zhao B, Xiang H, et al. Journal of Advanced Ceramics, 2020, 10(1), 62. 15 Bao S, Chen Y, Hu F Y, et al. Research Square, DOI:https://doi.org/10.21203/rs.3.rs-703471/v1. 16 Castle E, Csanadi T, Grasso S, et al. Scientific Reports, 2018, 8(1), 8609. 17 Yan X, Constantin L, Lu Y, et al. Journal of the American Ceramic Society, 2018, 101(10), 4486. 18 Zhou J, Zhang J, Zhang F, et al. Ceramics International, 2018, 44(17), 22014. 19 Zhou Y, Zhao B, Chen H, et al. Journal of Materials Science & Techno-logy, 2021, 74, 105. 20 Wang K, Chen L, Xu C, et al. Journal of Materials Science & Technology, 2020, 39, 99. 21 Li F, Lu Y, Wang X G, et al. Ceramics International, 2019, 45(17), 22437. 22 Deng X G, Wang K J, Du S, et al. Materials Reports, 2015, 29(9), 109 (in Chinese). 邓先功, 王军凯, 杜爽, 等. 材料导报, 2015, 29(9), 109. 23 Ning S, Wen T, Ye B, et al. Journal of the American Ceramic Society, 2019, 103(3), 2244. 24 Liu H, Ning S, Du B. Research Square, DOI:https://doi.org/10.21203/rs.3.rs-36425/v1. 25 Guo R, Li Z, Li L, et al. Journal of the European Ceramic Society, 2022, 42(5), 2127. 26 Gao Y, Huang L, Tong Z, et al. Journal of the American Ceramic Society, 2022, 105(10), 6370. 27 Lee Y, Kim S, Kim Y, et al. Journal of Materials Chemistry A, 2020, 8(2), 573. 28 Woydt M, Mohrbacher H. International Journal of Refractory Metals Hard Materials, 2015, 49, 212. 29 Demirskyi D, Borodianska H, Suzuki T, et al. Scripta Materialia, 2019, 164, 12. 30 Rasaki S, Zhang B, Anbalgam K, et al. Progress in Solid State Chemistry, 2018, 50, 1. 31 Saha S, Rajbongshi B, Ramani V, et al. International Journal of Hydrogen Energy, 2021, 46(24), 12801. 32 Gupta S K, Mao Y. Progress in Materials Science, 2021, 117, 100734. 33 Yang Q, Zhao L. Materials Characterization, 2008, 59(9), 1285. 34 Harrington T J, Gild J, Sarker P, et al. Acta Materialia, 2019, 166, 271. 35 Xiang H, Xing Y, Dai F Z, et al. Journal of Advanced Ceramics, 2021, 10(3), 385. 36 Quan B, Liang X, Ji G, et al. Journal of Alloys and Compounds, 2017, 728, 1065. 37 Praveena K, Sadhana K, Liu H L, et al. Journal of Alloys Compounds, 2016, 681, 499. 38 Ding D, Bai B, Xiao G, et al. Ceramics International, 2021, 47(13), 18708. 39 Sharma A, Usharani N J, Bhattacharya S S. Open Ceramics, 2021, 6, 100130. 40 Bakιş Y, Auwal I A, Ünal B, et al. Composites Part B:Engineering, 2016, 99, 248. 41 Liu D, Zhang A, Jia J, et al. Journal of the European Ceramic Society, 2020, 40(8), 2746. 42 Giri A, Braun J L, Hopkins P E. Journal of Applied Physics, 2018, 123(1), 015106. 43 Zhang W, Xiang H, Dai F, et al. Journal of Advanced Ceramics, 2022, 11(4), 545. 44 Feng G, Zhou W, Wang C H, et al. Ceramics International, 2019, 45(6), 7102. 45 Alam R S, Moradi M, Rostami M, et al. Journal of Magnetism and Magnetic Materials, 2015, 381, 1. 46 Kumar R, Choudhary H K, Pawar S P, et al. Physical Chemistry Chemical Physics, 2017, 19(34), 23268. 47 Moitra D, Hazra S, Ghosh B K, et al. RSC Advances, 2015, 5(63), 51130. 48 Fan Y, Yang H, Li M, et al. Materials Chemistry and Physics, 2009, 115(2), 696. 49 Rostami M, Jafarpour M, Ara H M, et al. Journal of Alloys Compounds, 2021, 872, 159656. 50 Meng S, Guo X, Jin G, et al. Journal of Materials Science, 2011, 47(6), 2899. 51 Wang P, Cheng L, Zhang Y, et al. Journal of Alloys and Compounds, 2017, 716, 306. 52 Wang Y. Advances in Applied Ceramics, 2022, 121(2), 57.