Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22050232-6    https://doi.org/10.11896/cldb.22050232
  无机非金属及其复合材料 |
(Si0.2Ti0.2Nb0.2Ta0.2V0.2)C高熵陶瓷的低温制备及吸波性能
张昊, 黄宗玥, 张妍彬, 魏剑*
西安建筑科技大学材料科学与工程学院,西安 710055
Low-temperature Preparation and Microwave Absorbing Properties of (Si0.2Ti0.2Nb0.2Ta0.2V0.2)C High-entropy Ceramic
ZHANG Hao, HUANG Zongyue, ZHANG Yanbin, WEI Jian*
School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 15750KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 寻求具有良好耐高温及力学性能的新型陶瓷材料是吸波材料领域的研究热点之一。高熵碳化物陶瓷具有高温热稳定性及抗氧化性好等优点,但合成温度高且吸波性能研究较少,限制了其在高温吸波材料领域的应用。本工作采用熔盐法合成了多晶岩盐晶型(Si0.2Ti0.2Nb0.2Ta0.2V0.2)C高熵碳化物陶瓷,研究了其物相组成、微观形貌及吸波特性。结果表明:随着反应温度的升高,样品的衍射峰逐渐锐化,吸波性能明显提高。当反应温度为1 500 ℃时,3.72 GHz时最低反射损耗达-34.68 dB;与已报道的高熵碳化物陶瓷相比,在相同的有效吸收带宽(2.3 GHz)下,涂层厚度减少了13.3%(1.5 mm降低到1.3 mm),其介电损耗主要来源于极化损耗和导电损耗。本工作制备的高熵碳化物陶瓷可以为研究制备新型环境适应、耐高温、抗冲击的高性能单相吸波材料提供新途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张昊
黄宗玥
张妍彬
魏剑
关键词:  高熵碳化物陶瓷  吸波材料  吸波性能  介电损耗  熔盐法    
Abstract: Seeking electromagnetic shielding materials with good physical properties is one of the hot spots in electromagnetic wave absorption. High entropy ceramics have the advantages of high temperature thermal stability and good oxidation resistance, but the high synthesis temperature and lack of research on wave-absorbing properties limit their development in the field of high-temperature wave absorption. In this work, polycrystalline rock salt type (Si0.2Ti0.2Nb0.2Ta0.2V0.2)C high entropy carbide ceramics were synthesized by molten salt method, and their phase composition, microscopic morphology and wave absorption properties were investigated. The results show that the diffraction peak of the sample shar-pened gradually with the increase of the reaction temperature and the absorption performance improved significantly. When the reaction temperature is 1 500 ℃, the lowest reflection loss reaches -34.68 dB at 3.72 GHz. Compared with the reported high-entropy carbide ceramics, the coa-ting thickness is reduced by 13.3% (1.5 mm to 1.3 mm) for the same effective absorption bandwidth (2.3 GHz), and the dielectric loss mainly comes from polarization loss and conductivity loss. The high-entropy carbide ceramics prepared in this paper can provide a new avenue for research on the preparation of new environmentally adapted, high-temperature resistant and shock-resistant high-performance single-phase absor-bing materials.
Key words:  high-entropy carbide ceramic    microwave absorbing material    microwave absorbing performance    dielectric loss    molten salt method
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  TB332  
基金资助: 国家自然科学基金面上项目(51578448;52272089);国家自然科学青年基金项目(51308447;52202113);陕西省优秀青年科学基金(2021JC-43);中国博士后面上基金(2021M702550);陕西省教育厅协同创新项目(20JY042);陕西省教育厅自然科学专项(19JK0463)
通讯作者:  *魏剑,西安建筑科技大学材料科学与工程学院副院长,纳米材料研究所所长。2008年博士毕业于西北工业大学材料学院。主要从事导电/热电水泥基复合材料、锂电池材料、导电/纳米纤维与膜材料、低维纳米材料规模制备技术的研究。出版高等学校规划教材2部,发表学术论文70余篇,以第一/通信作者在国际著名期刊发表论文57篇(其中,SCI论文45篇,一区论文25篇,他引总计1 200余次),申请和授权发明专利25项,技术转化9项。weijian@xauat.edu.cn   
作者简介:  张昊,2007年7月、2010年7月于西北大学和西安交通大学获得理学学士和硕士学位,2014年12月于西安交通大学获工学博士学位。现为西安建筑科技大学材料科学与工程学院讲师。目前主要研究领域为纳米材料,功能陶瓷材料,近年发表学术论文4篇,申请发明专利1项。
引用本文:    
张昊, 黄宗玥, 张妍彬, 魏剑. (Si0.2Ti0.2Nb0.2Ta0.2V0.2)C高熵陶瓷的低温制备及吸波性能[J]. 材料导报, 2024, 38(3): 22050232-6.
ZHANG Hao, HUANG Zongyue, ZHANG Yanbin, WEI Jian. Low-temperature Preparation and Microwave Absorbing Properties of (Si0.2Ti0.2Nb0.2Ta0.2V0.2)C High-entropy Ceramic. Materials Reports, 2024, 38(3): 22050232-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22050232  或          https://www.mater-rep.com/CN/Y2024/V38/I3/22050232
1 Kumar R, Sahoo S, Joanni E, et al. Carbon, 2021, 177, 304.
2 Soares B G, Barra G M O, Indrusiak T. Journal of Composites Science, 2021, 5(7), 173.
3 Houbi A, Aldashevich Z A, Atassi Y, et al. Journal of Magnetism and Magnetic Materials, 2021, 529, 167839.
4 Ren M, Li F, Gao P, et al. Construction Building Materials, 2020, 263, 120670.
5 Adebayo L L, Soleimani H, Yahya N, et al. Ceramics International, 2020, 46(2), 1249.
6 Cui L, Han X, Wang F, et al. Journal of Materials Science, 2021, 56(18), 10782.
7 Zhang M J, Li X, Qiao S S, et al. Materials Reports, 2021, 35(8), 8049 (in Chinese).
张梦杰, 李翔, 乔师帅, 等. 材料导报, 2021, 35(8), 8049.
8 Qiao S S, Wang Y, Jia Z Y, et al. Materials Reports, 2021, 35(18), 18059 (in Chinese).
乔师帅, 王元, 贾朝阳, 等. 材料导报, 2021, 35(18), 18059.
9 Rost C M, Sachet E, Borman T, et al. Nature Communications, 2015, 6(1), 8485.
10 Oses C, Toher C, Curtarolo S. Nature Reviews Materials, 2020, 5(4), 295.
11 Xie H X, Xiang H Z, Ma R Q, et al. Materials Reports, 2022, 36(6), 61 (in Chinese).
谢鸿翔, 项厚政, 马瑞奇, 等. 材料导报, 2022, 36(6), 61.
12 Ranganathan S. Current Science, 2003, 85(10), 1404.
13 Chen H, Zhao B, Zhao Z, et al. Journal of Materials Science & Technology, 2020, 47, 216.
14 Zhang W, Zhao B, Xiang H, et al. Journal of Advanced Ceramics, 2020, 10(1), 62.
15 Bao S, Chen Y, Hu F Y, et al. Research Square, DOI:https://doi.org/10.21203/rs.3.rs-703471/v1.
16 Castle E, Csanadi T, Grasso S, et al. Scientific Reports, 2018, 8(1), 8609.
17 Yan X, Constantin L, Lu Y, et al. Journal of the American Ceramic Society, 2018, 101(10), 4486.
18 Zhou J, Zhang J, Zhang F, et al. Ceramics International, 2018, 44(17), 22014.
19 Zhou Y, Zhao B, Chen H, et al. Journal of Materials Science & Techno-logy, 2021, 74, 105.
20 Wang K, Chen L, Xu C, et al. Journal of Materials Science & Technology, 2020, 39, 99.
21 Li F, Lu Y, Wang X G, et al. Ceramics International, 2019, 45(17), 22437.
22 Deng X G, Wang K J, Du S, et al. Materials Reports, 2015, 29(9), 109 (in Chinese).
邓先功, 王军凯, 杜爽, 等. 材料导报, 2015, 29(9), 109.
23 Ning S, Wen T, Ye B, et al. Journal of the American Ceramic Society, 2019, 103(3), 2244.
24 Liu H, Ning S, Du B. Research Square, DOI:https://doi.org/10.21203/rs.3.rs-36425/v1.
25 Guo R, Li Z, Li L, et al. Journal of the European Ceramic Society, 2022, 42(5), 2127.
26 Gao Y, Huang L, Tong Z, et al. Journal of the American Ceramic Society, 2022, 105(10), 6370.
27 Lee Y, Kim S, Kim Y, et al. Journal of Materials Chemistry A, 2020, 8(2), 573.
28 Woydt M, Mohrbacher H. International Journal of Refractory Metals Hard Materials, 2015, 49, 212.
29 Demirskyi D, Borodianska H, Suzuki T, et al. Scripta Materialia, 2019, 164, 12.
30 Rasaki S, Zhang B, Anbalgam K, et al. Progress in Solid State Chemistry, 2018, 50, 1.
31 Saha S, Rajbongshi B, Ramani V, et al. International Journal of Hydrogen Energy, 2021, 46(24), 12801.
32 Gupta S K, Mao Y. Progress in Materials Science, 2021, 117, 100734.
33 Yang Q, Zhao L. Materials Characterization, 2008, 59(9), 1285.
34 Harrington T J, Gild J, Sarker P, et al. Acta Materialia, 2019, 166, 271.
35 Xiang H, Xing Y, Dai F Z, et al. Journal of Advanced Ceramics, 2021, 10(3), 385.
36 Quan B, Liang X, Ji G, et al. Journal of Alloys and Compounds, 2017, 728, 1065.
37 Praveena K, Sadhana K, Liu H L, et al. Journal of Alloys Compounds, 2016, 681, 499.
38 Ding D, Bai B, Xiao G, et al. Ceramics International, 2021, 47(13), 18708.
39 Sharma A, Usharani N J, Bhattacharya S S. Open Ceramics, 2021, 6, 100130.
40 Bakιş Y, Auwal I A, Ünal B, et al. Composites Part B:Engineering, 2016, 99, 248.
41 Liu D, Zhang A, Jia J, et al. Journal of the European Ceramic Society, 2020, 40(8), 2746.
42 Giri A, Braun J L, Hopkins P E. Journal of Applied Physics, 2018, 123(1), 015106.
43 Zhang W, Xiang H, Dai F, et al. Journal of Advanced Ceramics, 2022, 11(4), 545.
44 Feng G, Zhou W, Wang C H, et al. Ceramics International, 2019, 45(6), 7102.
45 Alam R S, Moradi M, Rostami M, et al. Journal of Magnetism and Magnetic Materials, 2015, 381, 1.
46 Kumar R, Choudhary H K, Pawar S P, et al. Physical Chemistry Chemical Physics, 2017, 19(34), 23268.
47 Moitra D, Hazra S, Ghosh B K, et al. RSC Advances, 2015, 5(63), 51130.
48 Fan Y, Yang H, Li M, et al. Materials Chemistry and Physics, 2009, 115(2), 696.
49 Rostami M, Jafarpour M, Ara H M, et al. Journal of Alloys Compounds, 2021, 872, 159656.
50 Meng S, Guo X, Jin G, et al. Journal of Materials Science, 2011, 47(6), 2899.
51 Wang P, Cheng L, Zhang Y, et al. Journal of Alloys and Compounds, 2017, 716, 306.
52 Wang Y. Advances in Applied Ceramics, 2022, 121(2), 57.
[1] 吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
[2] 阮心怡, 张恒宇, 王妮, 肖红. 周期结构电磁超材料吸波体的设计及最新进展[J]. 材料导报, 2024, 38(3): 22090223-11.
[3] 李华伟, 王倩, 王荣, 刘飞宇, 谢汶桦, 刘锋. 复合吸波剂增强钢渣-水泥基双层结构吸波材料的制备[J]. 材料导报, 2024, 38(23): 23080003-8.
[4] 林立海, 李处森, 颜雨坤, 白炜琛, 刘利冉, 张劲松. 热解碳泡沫材料吸波机理研究[J]. 材料导报, 2024, 38(1): 22050338-7.
[5] 虞亚霖, 莫岩, 陈永, 李德. LiNO3-LiOH熔盐法制备单晶LiNi0.75Co0.10Mn0.15O2正极材料[J]. 材料导报, 2023, 37(4): 21050208-6.
[6] 李宇, 王建敏, 张弦, 欧阳顺利. 高附加值煤气化渣基材料开发研究进展[J]. 材料导报, 2023, 37(23): 22040354-12.
[7] 刘雄飞, 王壮, 吴尧尧, 王晓中. 电磁吸波结构研究进展[J]. 材料导报, 2023, 37(22): 22020147-8.
[8] 满世甲, 杜雪岩, 申永前, 龙建. 镍渣衍生Fe3O4/聚苯胺复合材料的制备及微波吸收性能研究[J]. 材料导报, 2023, 37(22): 22030093-6.
[9] 吴海华, 杨增辉, 刘力, 张忍静, 邓开鑫, 李言. 三层石墨烯吸波体熔融沉积成形及层间材料分布对吸波性能的影响[J]. 材料导报, 2023, 37(2): 21080161-7.
[10] 何恩义, 殷诗浩, 叶永盛, 丁迪, 胡正浪, 吴海华. 微乳液法制备石墨烯-羰基铁粉复合微球及其吸波性能[J]. 材料导报, 2023, 37(17): 22010129-8.
[11] 李威霖, 陈玲, 王佳, 袁凯, 焦剑. Fe3O4-GO复合纳米纸的制备及吸波性能研究[J]. 材料导报, 2023, 37(1): 21080126-7.
[12] 陈亮, 陈少文, 袁振亮, 李启凡, 马会茹, 陈志宏, 李维, 官建国. 有机氟包覆片状FeSiAl吸收剂及其吸波性能[J]. 材料导报, 2022, 36(9): 21030255-6.
[13] 李威霖, 王佳, 焦剑. Fe3O4-MWCNTs杂化纳米纸对纤维增强复合材料吸波性能的影响[J]. 材料导报, 2022, 36(5): 20110094-6.
[14] 段广宇, 李玥, 胡静文, 胡祖明, 于翔, 迟长龙. 耐高温聚间苯二甲酰间苯二胺介电复合材料的制备及性能[J]. 材料导报, 2022, 36(4): 20120097-6.
[15] 吕秀娟, 唐晓龙, 易红宏, 赵顺征, 任晨阳. 微波诱导催化反应在环境净化中的应用研究进展[J]. 材料导报, 2022, 36(18): 20100163-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed