Please wait a minute...
材料导报  2023, Vol. 37 Issue (17): 22010129-8    https://doi.org/10.11896/cldb.22010129
  无机非金属及其复合材料 |
微乳液法制备石墨烯-羰基铁粉复合微球及其吸波性能
何恩义1,2, 殷诗浩1, 叶永盛1,2, 丁迪1, 胡正浪1, 吴海华1,2,*
1 三峡大学机械与动力学院,湖北 宜昌 443002
2 石墨增材制造技术与装备湖北省工程研究中心,湖北 宜昌 443002
Graphene-Carbonyl Iron Powder Composite Microspheres Prepared by Microemulsion Method and Their Absorbing Properties
HE Enyi1,2, YIN Shihao1, YE Yongsheng1,2, DING Di1, HU Zhenglang1, WU Haihua1,2,*
1 College of Mechanical and Power Engineering of China Three Gorges University, Yichang 443002, Hubei, China
2 Graphite Additive Manufacturing Technology and Equipment Hubei Engineering Research Center, Yichang 443002, Hubei, China
下载:  全 文 ( PDF ) ( 20823KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以开发轻量、高效、宽频的吸波材料为研究目的,本工作利用微乳液法制备石墨烯-羰基铁粉复合吸波微球,采用XRD、拉曼光谱(Raman)、SEM和矢量网络分析仪(VNA)对复合材料的物相结构、微观形貌和电磁性能进行表征分析,重点研究了石墨烯(rGO)含量对材料吸波性能的影响。结果表明,测试样品厚度为2.00 mm、rGO含量为6.7%(质量分数,全文同)时复合材料的吸波性能最强,其最小反射损耗达到-30.42 dB,有效吸收带宽为5.04 GHz (11.28~16.32 GHz)。rGO的添加有利于形成珊瑚孔洞结构,增加了电磁波的入射路径,同时孔洞的存在有利于增强介质之间的极化现象。rGO和羰基铁粉(CIP)的均匀分散构成了多吸波机理的协同效应。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何恩义
殷诗浩
叶永盛
丁迪
胡正浪
吴海华
关键词:  石墨烯  复合材料  吸波机理  吸波性能  阻抗匹配    
Abstract: In order to develop light weight, high efficiency, broadband absorbing materials for the purpose of research, graphene-carbonyl iron powder composite absorbing microspheres were prepared by microemulsion method in this work. The phase structure, microstructure and electromagnetic properties of the composites were characterized by XRD, Raman spectroscopy (Raman), SEM and vector network analyzer (VNA). The effect of graphene (rGO) content on the absorbing properties of the materials was studied. The results show that when the thickness of the test sample is 2.00 mm and the rGO content is 6.7wt%, the absorption performance is the strongest, the minimum reflection loss is -30.42 dB, and the effective absorption bandwidth is 5.04 GHz (11.28—16.32 GHz). The addition of rGO is beneficial to the formation of coral pore structure, increasing the incidence path of electromagnetic wave, and the existence of pore is beneficial to enhance the polarization phenomenon between media. The uniform dispersion of rGO and CIP constitutes the synergistic effect of multi-absorbing mechanism.
Key words:  graphene    composite material    absorbing mechanism    absorbing performance    impedance matching
出版日期:  2023-09-10      发布日期:  2023-09-05
ZTFLH:  TB33  
基金资助: 国家自然科学基金(51575313);石墨增材制造技术与装备湖北省工程研究中心开放基金(HRCGAM202103)
通讯作者:  *吴海华,三峡大学机械与动力学院教授、博士研究生导师。1993 年武汉理工大学船舶机械制造及其自动化专业本科毕业,2003 年华中科技大学材料加工工程专业硕士毕业,2009年西安交通大学机械工程专业博士毕业。目前主要从事石墨/石墨烯 3D 打印等研究工作。近年来,在《机械工程学报》、Rapid Prototyping JournalJournal of Advanced Manufacturing Technology等知名期刊发表学术论文70多篇,获得国家授权发明专利25项,科研成果转化2项。wuhaihua@ctgu.edu.cn   
作者简介:  何恩义,三峡大学机械与动力学院讲师、硕士研究生导师。2008年07月、2013年07月分别于中北大学和华南理工大学大学获得工学学士学位和工学博士学位。2013年博士毕业后到三峡大学工作至今。目前加入吴海华教授团队,主要从事吸波材料等方面的研究工作。发表论文10余篇,包括The International Journal of Advanced Manufacturing Technology、《复合材料学报》等。
引用本文:    
何恩义, 殷诗浩, 叶永盛, 丁迪, 胡正浪, 吴海华. 微乳液法制备石墨烯-羰基铁粉复合微球及其吸波性能[J]. 材料导报, 2023, 37(17): 22010129-8.
HE Enyi, YIN Shihao, YE Yongsheng, DING Di, HU Zhenglang, WU Haihua. Graphene-Carbonyl Iron Powder Composite Microspheres Prepared by Microemulsion Method and Their Absorbing Properties. Materials Reports, 2023, 37(17): 22010129-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010129  或          http://www.mater-rep.com/CN/Y2023/V37/I17/22010129
1 Li Y, Gai L, Song G, et al. Carbon, 2022, 186, 238.
2 An Rui, Wei Hongyu, He Min, et al. Materials Reports. 2017, 31(21), 46 (in Chinese).
安锐, 韦红余, 何敏, 等. 材料导报, 2017, 31(21), 46.
3 Li Ze, Zhao Fang, Wang Jianjiang, et al. Materials Reports. 2020, 34(14), 7(in Chinese).
李泽, 赵芳, 王建江, 等. 材料导报, 2020, 34(14), 7.
4 Xie Di, Wei Hongyu, He Min, et al. Materials Reports. 2017, 31(A02), 5(in Chinese).
谢迪, 韦红余, 何敏, 等. 材料导报, 2017, 31(A02), 5.
5 Shen Z, Xing H, Wang H, et al. Journal of Alloys and Compounds, 2018, 753, 28.
6 Shu R, Wan Z, Zhang J, et al. ACS Applied Materials and Interfaces, 2020, 12(4), 4689.
7 Li Z, Li Y, Shi B, et al. Ceramics International, 2022, 48, 9277.
8 Zuo Y, Yao Z, Lin H, et al. Composites Part B:Engineering, 2019, 179, 107533.
9 Ye Xicong, Ouyang Bin, Yang Chao. Acta Materiae Compositae Sinica, 2022, 39(7), 3292.
叶喜葱, 欧阳宾, 杨超, 等. 复合材料学报, 2022, 39(7), 3292.
10 Jang W, Mallesh S, Gu M, et al. Journal of Alloys and Compounds, 2021, 886, 161230.
11 Weng X, Lv X, Li B, et al. Materials Letters, 2017, 188, 280.
12 Wang S, Huang X, Zhang W. Applied Physics A:Materials Science and Processing, 2021, 127, 742
13 Wang Xingang, Wang Xingjing, Xia Long, et al. Chinese Journal of Materials Research, 2019, 33(11), 824(in Chinese).
王信刚, 汪兴京, 夏龙, 等. 材料研究学报, 2019, 33(11), 824.
14 Kasomo R M, Li H, Zheng H, et al. Minerals Engineering, 2020, 157, 106544.
15 Xiang Z, Song Y, Xiong J, et al. Carbon, 2019, 142, 20.
16 Chen N, Jiang J T, Xu C Y, et al. ACS Applied Materials & Interfaces, 2017, 9(26), 21933.
17 Wang Y, Gao X, FuY, et al. Composites Part B:Engineering, 2019, 169, 221.
18 Ma Zhijun, Mang Changye, Weng Xingyuan, et al. Acta Materiae Compositae Sinica, 2019, 36(7), 1776(in Chinese).
马志军, 莽昌烨, 翁兴媛, 等. 复合材料学报, 2019, 36(7), 1776.
19 Xiang J, Li J, Zhang X, et al. Journal of Materials Chemistry A, 2014, 2(40), 16905.
20 Zhao H, Cheng Y, Zhang Z, et al. Carbon, 2021, 173, 501.
21 Feng J, Hou Y, Wang Y, et al. ACS Applied Materials & Interfaces, 2017, 9(16), 14103, .
22 Magisetty R, Raj A B, Datar S, et al. Journal of Alloys and Compounds, 2020, 848, 155771.
23 Qiu Y, Yang H, Ma L, et al. Journal of Colloid and Interface Science, 2021, 581, 783.
24 Hu Zhenglang, Wu Haihua, Yang Zenghui, et al. Acta Materiae Compositae Sinica, 2022, (7), 3303 (in Chinese).
胡正浪, 吴海华, 杨增辉, 等. 复合材料学报, 2022, (7), 3303.
25 Wang L, Guan Y, Qiu X, et al. Chemical Engineering Journal, 2017, 326, 945.
26 Zhao X, Huang Y, Liu X, et al. Journal of Colloid and Interface Science, 2022, 607, 192.
27 Zhou M, Zhang X, Wei J, et al. The Journal of Physical Chemistry C, 2011, 115(5), 1398.
28 Liu P, Gao S, Wang Y, et al. Chemical Engineering Journal, 2020, 381, 122653.
29 Zhao B, Guo X, Zhao W, et al. Nano Research, 2017, 10(1), 331.
30 Miles P, Westphal W, Von Hippel A. Reviews of Modern Physics, 1957, 29(3), 279.
31 Zhang H, Jia Z, Wang B, et al. Chemical Engineering Journal, 2021, 421, 129960.
32 Dong S, Zhang W, Zhang X, et al. Chemical Engineering Journal, 2018, 354, 767.
33 Lian Y, Han B, Liu D, et al. Nano-micro Letters, 2020, 12(1), 1.
34 Xu Y, Yan Z, Zhang D. Applied Surface Science, 2015, 356, 1032.
35 Bai Y, Ma W, Liu Y, et al. Journal of Materials Science:Materials in Electronics, 2019, 30(6), 5454.
36 Yin P, Zhang L, Wang J, et al. Powder Technology, 2019, 356, 325.
37 Qi Z, Chunbo L, Zhuang W, et al. Journal of Magnetism and Magnetic Materials, 2019, 479, 337.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 邵慧龙, 费志方, 李肖华, 赵爽, 李昆锋, 杨自春. 玻璃微珠/PI气凝胶复合材料的制备与吸声性能研究[J]. 材料导报, 2023, 37(9): 21090097-6.
[3] 刘云福, 刘峰, 姚初清, 蒋丹枫, 韩文敏, 戴耀东. 基于泡沫陶瓷三维互穿网络负压浸渍法制备新型耐高温中子屏蔽材料[J]. 材料导报, 2023, 37(8): 21090118-9.
[4] 杨赟, 刘璇, 崔益华, 余彤, 武康乐, 潘蕾. 植物纤维增强树脂基复合材料界面纳米化改性的研究进展及应用[J]. 材料导报, 2023, 37(8): 21100069-11.
[5] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[6] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[7] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[8] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[9] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[10] 刘洋, 庄蔚敏. 金属-聚合物及金属-复合材料薄壁结构压印连接技术的研究进展[J]. 材料导报, 2023, 37(3): 21110241-12.
[11] 吴海华, 杨增辉, 刘力, 张忍静, 邓开鑫, 李言. 三层石墨烯吸波体熔融沉积成形及层间材料分布对吸波性能的影响[J]. 材料导报, 2023, 37(2): 21080161-7.
[12] 刘婷, 朱宇, 胡晓, 张松. 超声增材制造在航空航天领域的应用进展[J]. 材料导报, 2023, 37(2): 21040295-8.
[13] 范存霞, 谷雨, 邱星晨, 李长明, 郭春显. 基于石墨烯/氯化血红素复合物纳米酶可视化检测谷胱甘肽[J]. 材料导报, 2023, 37(2): 22030004-8.
[14] 仝博, 李永清, 张振海, 赵存生. 复合材料多层圆柱壳振动和声辐射问题研究进展[J]. 材料导报, 2023, 37(2): 21030025-8.
[15] 樊宇澄, 冯闯. 热电水泥基复合材料研究现状及展望[J]. 材料导报, 2023, 37(17): 21110105-22.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed