Please wait a minute...
材料导报  2023, Vol. 37 Issue (6): 21050162-7    https://doi.org/10.11896/cldb.21050162
  无机非金属及其复合材料 |
利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展
张曦挚, 崔红*, 胡杨, 邓红兵
西安航天复合材料研究所,西安 710025
Research Progress of Plasma Spraying Preparation of C/C Composite Coatings with Ablation and Oxidation Resistance
ZHANG Xizhi, CUI Hong*, HU Yang, DENG Hongbing
Research Institute of Xi'an Aerospace Composites Materials, Xi'an 710025, China
下载:  全 文 ( PDF ) ( 7539KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着科技的发展,人类对热防护材料的性能有了更高要求。C/C复合材料是材料领域中重点开发的一种新型轻质高温结构材料,高温下具有优异的力学性能,成为航空航天、洲际弹道导弹等超音速飞行器的理想候选材料,但成型周期长、生产成本高、高温下抗氧化性差的缺点限制了其广泛应用。通过等离子喷涂技术制备的抗氧化涂层展现出经济、高效、便捷的优势,极具发展潜力与战略意义。近年来,等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究主要集中在涂层与基体的界面优化、不同材料喷涂工艺参数的摸索、复相涂层的制备等方面。本文从这些方面对等离子喷涂耐烧蚀抗氧化涂层的研究进展进行了详细的总结与归纳。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张曦挚
崔红
胡杨
邓红兵
关键词:  C/C复合材料  等离子喷涂  陶瓷涂层  金属涂层  耐烧蚀性能  抗氧化性能    
Abstract: The rapid development of science and technology have posed higher performance requirements on thermal protection materials. As a new type of lightweight high-temperature structural material, C/C composite possesses excellent high-temperature mechanical properties, making it an ideal candidate material for supersonic aircraft such as aviation, aerospace, and intercontinental ballistic missiles. However, its application has been greatly restricted due to its disadvantages of long production cycle, high production cost, and poor oxidation at high temperatures. The anti-oxidation coatings prepared by plasma spraying technology have been proved to be economic, efficient and convenient, which signify the materials' great development potential and strategic value. In recent years, global research of plasma spraying anti-oxidation coatings on surface of C/C composite material have mainly focused on the optimization of coating-substrate interface, the exploration of appropriate spraying process parameters for different coatings, and the preparation of multiphase coatings. This review gives a comprehensive description on research progress of plasma spraying anti-ablation and anti-oxidation coatings from the above-mentioned aspects.
Key words:  C/C composite    plasma spraying    ceramic coating    metal coating    anti-ablation performance    anti-oxidation performance
发布日期:  2023-03-27
ZTFLH:  TB304  
基金资助: 国防科技创新特区项目(19H86303ZD102006)
通讯作者:  *崔红,1995年毕业于航天动力技术研究院,获得材料工程硕士学位,2000年毕业于西北工业大学,获得材料学博士学位,2004年被评聘为研究员。主要从事航天发动机用炭/炭复合材料技术基础、抗烧蚀炭/炭复合材料研究,共发表国内外论文100余篇,申请专利22项,授权5项。cuihong1969@126.com   
作者简介:  张曦挚,2019年毕业于四川大学高分子科学与工程学院,获得工学学士学位。现为西安航天复合材料研究所硕士研究生,在崔红研究员的指导下进行研究。目前主要研究领域为高温材料及制造。
引用本文:    
张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
ZHANG Xizhi, CUI Hong, HU Yang, DENG Hongbing. Research Progress of Plasma Spraying Preparation of C/C Composite Coatings with Ablation and Oxidation Resistance. Materials Reports, 2023, 37(6): 21050162-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050162  或          http://www.mater-rep.com/CN/Y2023/V37/I6/21050162
1 Zhu Y, Hu Y, Cui H, et al. Ceramics International, 2021, 47(5), 6554.
2 Fahrenholtz W G, Hilmas G E. Scripta Materialia, 2017, 129, 94.
3 Jin X, Fan X, Lu C, et al. Journal of the European Ceramic Society, 2018, 38 (1), 1.
4 Tang S, Hu C. Journal of Materials Science & Technology, 2017, 33(2), 117.
5 Windhorst T, Blount G. Materials & Design, 1997, 18(1), 11.
6 Ruan Q, Li R Z, Xue P F, et al. Aerospace Manufacturing Technology, 2020(5), 66(in Chinese).
阮强, 李瑞珍, 薛朋飞, 等. 航天制造技术, 2020(5), 66.
7 Yin Z, Tao S, Zhou X, et al. Journal of the European Ceramic Society, 2008, 28(6), 1143.
8 Lashmi P G, Ananthapadmanabhan P V, Unnikrishnan G, et al. Journal of the European Ceramic Society, 2020, 40(8), 2731.
9 Gulyaev I P, Kuzmin V I, Kornienko E E, et al. Journal of Physics Conference Series, DOI:10.1088/1742-6596/1393/1/012085.
10 Xue C X, Zhu Y L. Bulletin of the Chinese Ceramic Society, 2012, 31(4), 884(in Chinese).
薛春霞, 朱云龙. 硅酸盐通报, 2012, 31(4), 884.
11 Wang C C, Li K Z, He D Y, et al. Ceramics International, 2019, 45 (17), 21960.
12 Gu S, Zhang S, Liu F, et al. Applied Surface Science, 2018, 455, 849.
13 Guo L J, Peng J, Wang H Q, et al. Journal of Alloys and Compounds, 2017, 703, 560.
14 Wang L, Fu Q G, Liu N K, et al. Journal of Thermal Spray Technology, 2016, 25 (7), 1280.
15 Lu G M. Fundamental research on plasma spraying process for bevel coating. Master's Thesis, Xinjiang University, China, 2018 (in Chinese).
路广明. 斜面涂层的等离子喷涂工艺基础研究. 硕士学位论文, 新疆大学, 2018.
16 Zou K, Zou J P, Deng C M, et al. Transactions of Nonferrous Metals Society of China, 2021, 31(1), 243.
17 Wang J W, Liu M, Deng C M, et al. Equipment Enviromental Engineering, 2016, 13(3), 43 (in Chinese).
王佳文, 刘敏, 邓春明, 等. 装备环境工程, 2016, 13(3), 43.
18 Krenkel W, Berndt F. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2005, 412(1-2), 177.
19 Bartuli C, Valente T, Tului M. Surface & Coatings Technology, 2002, 155(2-3), 260.
20 Tului M, Marino G, Valente T. Surface & Coatings Technology, 2006, 201(5), 2103.
21 Hu C, Niu Y, Li H, et al. Journal of Thermal Spray Technology, 2012, 21(1), 16.
22 Wang C, Li K, He Q, et al. Materials & Design, 2018, 152, 40.
23 Yao X, Li H, Zhang Y, et al. Journal of Thermal Spray Technology, 2013, 22 (4), 531.
24 Hu D, Fu Q, Liu T, et al. Journal of the European Ceramic Society, 2020, 40 (2), 212.
25 Li K, Liu G, Zhang Y. Surface & Coatings Technology, 2019, 357, 48.
26 Kang B R, Kim H S, Oh P Y, et al. Materials, 2019, 12(5), 747.
27 Yao D J, Li H J, Wu H, et al. Journal of the European Ceramic Society, 2016, 36(15), 3739.
28 Yang Y, Li K Z, Zhao Z G, et al. Advances in Applied Ceramics, 2016, 115 (8), 473.
29 Feng G, Li H, Yao X, et al. Surface & Coatings Technology, 2020, 400.
30 Yang Y, Li K, Zhao Z, et al. Ceramics International, 2017, 43 (1), 1495.
31 Wang Y J, Li H J, Fu Q G, et al. Ceramics International, 2013, 39(1), 359.
32 Guo L J, Peng J, Kou G, et al. Ceramics International, 2017, 43(12), 8989.
33 Wang C C, Li K Z, He D Y, et al. Applied Surface Science, 2020, 506, 144776.
34 Han W, Liu M, Deng C, et al. Rare Metal Materials and Engineering, 2018, 47(4), 1043.
35 Zou B, Khan Z S, Gu L, et al. Corrosion Science, 2012, 62, 192.
36 Ying W, Binglin Z, Xizhi F, et al. Key Engineering Materials, 2013, 537, 36.
37 Zou B, Hui Y, Huang W, et al. Journal of the European Ceramic Society, 2015, 35(7), 2017.
38 Zhang J P, Fu Q G, Zhang P F, et al. Surface & Coatings Technology, 2016, 285, 24.
39 Hu C, Niu Y, Li H, et al. Surface & Coatings Technology, 2013, 217, 105.
40 Huo C, Guo L, Zhou L, et al. Journal of Alloys and Compounds, 2018, 752, 489.
41 Parthasarathy T A, Rapp R A, Opeka M, et al. Acta Materialia, 2007, 55 (17), 5999.
42 Wang L L, Yan L S, Guo C Y, et al. Acta Materiae Compositae Sinica, 2020, 37(9), 2250(in Chinese).
王玲玲, 闫联生, 郭春园, 等. 复合材料学报, 2020, 37(9), 2250.
43 Wei X, Li J W, Zhang W G. Equipment Enviromental Engineering, 2016, 13(3), 12(in Chinese).
魏玺, 李捷文, 张伟刚. 装备环境工程, 2016, 13(3), 12.
44 Xu L, Cheng J, Li X, et al. Journal of the American Ceramic Society, 2018, 101 (9), 3830.
45 Hu C, Niu Y, Huang S, et al. Journal of Alloys and Compounds, 2015, 646, 916.
46 Ma H, Miao Q, Liang W, et al. Ceramics International, 2021, 47(5), 6728.
47 Xu J, Liu Y, Ma Z, et al. Ceramics International, 2021, 47(1), 400.
48 Li J, Zhang Y, Wang H, et al. Journal of Alloys and Compounds, 2020, 824.
49 Choury J J. In: 12th Propulsion Conference. Palo Alto, CA, USA, 1976.
50 Zhang Y, Zhou S M, Xia J T. Carbon Techniques, 2004(4), 20(in Chinese).
张勇, 周声劢, 夏金童. 炭素技术, 2004(4), 20.
51 Choi S D, Seo H I, Lim B J, et al. Composites Research, 2018, 31(5), 260.
52 Huo C, Guo L, Wang C, et al. Ceramics International, 2019, 45(2), 1777.
53 Ren J, Zhang Y, Fu Y, et al. Surface & Coatings Technology, 2018, 344, 250.
54 Balani K, Gonzalez G, Agarwal A, et al. Journal of the American Ceramic Society, 2006, 89(4), 1419.
55 Pu H, Niu Y, Hu C, et al. Ceramics International, 2015, 41(9), 11387.
56 Savage. Carbon-carbon composites, Chapman and Hall, London, 1993.
57 Cai Z Y, Shen H T, Liu S N, et al. The Chinese Journal of Nonferrous Metals, 2020, 30 (9), 1991(in Chinese).
蔡圳阳, 沈鸿泰, 刘赛男, 等. 中国有色金属学报, 2020, 30(9), 1991.
58 Jie H Z, Cui H, Li R Z, et al. Materials Reports, 2015, 29(S1), 53(in Chinese).
解惠贞, 崔红, 李瑞珍, 等. 材料导报, 2015, 29(S1), 53.
59 Qiu Z M. Solid rocket motor materials and technology, China Astronautic Publishing Hous, China, 1995, pp. 495 (in Chinese).
丘哲明. 固体火箭发动机材料与工艺, 中国宇航出版社, 1995, pp.495.
60 Zhu Y, Sun J T, Yan L S, et al. Journal of Functional Materials, 2019, 50(6), 6206(in Chinese).
朱阳, 孙建涛, 闫联生, 等. 功能材料, 2019, 50(6), 6206.
61 Tokunaga K, Kubota Y, Noda N, et al. Fusion Engineering and Design, 2006, 81(1-7), 133.
62 Zhou Z, Wang Y, Gong J, et al. Journal of Thermal Spray Technology, 2016, 25(8), 1657.
63 Zhou Z, Sun Z, Wu H, et al. Advanced Engineering Materials, 2018, 20(5).
64 Zhou Z, Niu F, Hu X, et al. Advanced Engineering Materials, 2021, 23(6), 2001457.
65 Lipke D W, Zhang Y S, Liu Y J, et al. Journal of the European Ceramic Society, 2010, 30(11), 2265.
66 Wang S, Zhu Y L, Chen H M, et al. Ceramics International, 2014, 40(5), 7307.
67 Guo L J, Peng J, Guo C, et al. Vacuum, 2017, 143, 262.
68 Liu Y B, Wang Q S, Ma Z, et al. Materials Research Innovations, 2014, 18, 1017.
69 Wen B, Ma Z, Liu Y, et al. Ceramics International, 2014, 40(8), 11825.
[1] 李胜男, 路全彬, 都东, 孙华为, 周许升, 龙伟民. C/C复合材料钎焊接头应力场的有限元分析[J]. 材料导报, 2023, 37(1): 21120062-5.
[2] 陈丹, 宋琛, 杜柯, 郭宇, 刘志义, 刘太楷, 刘敏. 沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响[J]. 材料导报, 2022, 36(Z1): 22030119-5.
[3] 姚亿文, 杨飞跃, 赵爽, 陈国兵, 李昆锋, 杨自春. 新型陶瓷涂层的制备、结构调控及应用研究进展[J]. 材料导报, 2022, 36(23): 21010029-7.
[4] 魏贺冉, 闫联生, 孙建涛. 离子推力器栅极材料的发展现状[J]. 材料导报, 2022, 36(22): 22050099-6.
[5] 刘虎, 齐哲, 艾莹珺, 周怡然, 杨金华, 赵文青, 赵春玲, 郎旭东, 贺宜红, 焦健. SiC涂层对熔渗SiCf/SiC复合材料高温服役性能的影响[J]. 材料导报, 2022, 36(21): 21070221-5.
[6] 唐紫苑, 张淑婷, 杜开平, 宣鹏举, 司丽娜. 包埋渗技术在镍基高温合金中的应用[J]. 材料导报, 2021, 35(Z1): 389-394.
[7] 封帆, 王美玲, 李振华, 陆永浩. 超超临界机组用HR3C奥氏体耐热钢研究进展[J]. 材料导报, 2021, 35(9): 9186-9195.
[8] 韩冰源, 徐文文, 朱胜, 黄庆伟, 雷卫宁, 杭卫星, 杜伟. 面向等离子喷涂涂层质量调控的工艺优化方法研究现状[J]. 材料导报, 2021, 35(21): 21105-21112.
[9] 李恩重, 郭伟玲, 刘军, 于鹤龙, 徐滨士. 先驱体转化陶瓷涂层的裂解方法研究进展[J]. 材料导报, 2021, 35(21): 21151-21158.
[10] 张智, 马幼平, 周子凌, 魏花丽, 赵丽娜. 空心球羟基磷灰石等离子喷涂粉体的制备[J]. 材料导报, 2021, 35(2): 2019-2025.
[11] 张宇慧, 李大燕, 袁晨风, 金国, 房永超, 张丹. 金属Ni修饰的石墨烯及其对等离子喷涂NiCoCrAlY涂层力学性能的影响[J]. 材料导报, 2021, 35(10): 10141-10146.
[12] 程海松, 刘岗, 雷刚, 谭俊, 陈春彦, 梁勇, 苏岳亮, 吴开颜, 杜永斌. 燃煤锅炉受热面高温腐蚀防护涂层技术研究进展[J]. 材料导报, 2020, 34(Z1): 433-435.
[13] 季根顺, 陈晓龙, 贾建刚, 李小龙, 龚静博, 郝相忠. 液相汽化TG-CVI法制备C/C复合材料的组织和性能[J]. 材料导报, 2020, 34(2): 2029-2033.
[14] 姚宏伟, 卢一平, 曹志强, 王同敏, 李廷举. FCC/L12共格高熵高温合金的研究进展[J]. 材料导报, 2020, 34(17): 17041-17046.
[15] 施佳鑫, 朱卫华, 朱红梅, 陈志勇, 刘晋京, 史新灵, 王新林. CaB6对激光熔覆生物陶瓷涂层组织和生物学性能的影响[J]. 材料导报, 2020, 34(10): 10030-10034.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed