Please wait a minute...
材料导报  2022, Vol. 36 Issue (21): 21070221-5    https://doi.org/10.11896/cldb.21070221
  无机非金属及其复合材料 |
SiC涂层对熔渗SiCf/SiC复合材料高温服役性能的影响
刘虎1, 齐哲1, 艾莹珺1, 周怡然1, 杨金华1, 赵文青1, 赵春玲2, 郎旭东2, 贺宜红2, 焦健1,*
1 中国航发北京航空材料研究院先进复合材料科技重点实验室,北京 100095
2 中国航发湖南动力机械研究所,湖南 株洲 412002
Effect of SiC Coating on High-Temperature Service Performance of SiCf/SiC Composite Prepared via Melt Infiltration Process
LIU Hu1, QI Zhe1, AI Yingjun1, ZHOU Yiran1, YANG Jinhua1, ZHAO Wenqing1, ZHAO Chunling2, LANG Xudong2, HE Yihong2, JIAO Jian1,*
1 National Key Laboratory of Advanced Composites, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 AECC Hunan Aviation Powerplant Research Institute, Zhuzhou 412002,Hunan, China
下载:  全 文 ( PDF ) ( 8067KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用化学气相沉积法(CVD)在熔渗制备的SiCf/SiC复合材料表面沉积了SiC涂层,通过高温氧化试验研究了涂层对复合材料高温服役性能的影响,结果表明:在1 200 ℃空气环境中氧化100 h后,无涂层试样的室温平均弯曲强度为424 MPa,弯曲强度下降了36.2%;而有涂层试样的室温平均弯曲强度为631 MPa,弯曲强度仅下降6.9%。SEM和XRD表征显示,无涂层试样中SiC纤维的氧化和BN界面层的退化失效是复合材料弯曲性能下降的重要原因,断口纤维拔出较少,呈脆性断裂特征;而有涂层试样表面氧化生成SiO2氧化膜,其厚度增加过程服从抛物线规律。由于SiC层的封闭保护作用,复合材料试样受到的氧化作用较小,弯曲性能更好,断口纤维拔出明显。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘虎
齐哲
艾莹珺
周怡然
杨金华
赵文青
赵春玲
郎旭东
贺宜红
焦健
关键词:  SiCf/SiC复合材料  SiC涂层  抗氧化性能    
Abstract: SiC coating was prepared by chemical vapor deposition (CVD) on the surface of SiCf/SiC composite manufactured by melt-infiltration. The effect of SiC coating on the high-temperature service performance of the SiCf/SiC composite was studied. The bending test results show that the average bending strength at ambient temperature for samples with and without SiC coating were 631 MPa and 424 MPa after oxidation at 1 200 ℃ in air for 100 h, which were reduced by 6.9% and 36.2%, respectively. The test specimen without SiC coating undergoes brittle fracture with very few fibers pulled out. The severer degradation of their flexural strength could be ascribed to the oxidation of SiC fibers and degradation of BN interphase, as analyzed by SEM and XRD. As for the samples with SiC coating, silicon dioxide film was formed on the outer surface of the coating after thermal exposure and its growth follows the parabolic rate law. The samples were subjected to comparatively slighter oxidation and displayed better flexural strength due to the protection from the SiC coating, and also significant pull-out of fibers could still be observed on the fracture surface.
Key words:  SiCf/SiC composite    SiC coating    oxidation resistance
出版日期:  2022-11-10      发布日期:  2022-11-03
ZTFLH:  TB332  
通讯作者:  * jian.jiao@biam.ac.cn   
作者简介:  刘虎,中国航发北京航空材料研究院高级工程师,2014年于东南大学获得应用化学专业博士学位,毕业后入职北京航空材料研究院至今,主要从事陶瓷基复合材料制备工艺研究。发表学术论文30余篇,获授权国家发明专利10余项。
焦健,研究员,硕士研究生导师,中国航发北京航空材料研究院表面工程研究所副所长。2006年获德国斯图加特大学自然科学博士学位,目前主要从事陶瓷基复合材料研制与应用研究。发表学术论文120余篇,获授权国家发明专利30余项,出版译作1部。
引用本文:    
刘虎, 齐哲, 艾莹珺, 周怡然, 杨金华, 赵文青, 赵春玲, 郎旭东, 贺宜红, 焦健. SiC涂层对熔渗SiCf/SiC复合材料高温服役性能的影响[J]. 材料导报, 2022, 36(21): 21070221-5.
LIU Hu, QI Zhe, AI Yingjun, ZHOU Yiran, YANG Jinhua, ZHAO Wenqing, ZHAO Chunling, LANG Xudong, HE Yihong, JIAO Jian. Effect of SiC Coating on High-Temperature Service Performance of SiCf/SiC Composite Prepared via Melt Infiltration Process. Materials Reports, 2022, 36(21): 21070221-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070221  或          http://www.mater-rep.com/CN/Y2022/V36/I21/21070221
1 Corman G, Upadhyay R, Sinha S, et al. In: Materials research for manufacturing, Springer, Germany, 2016, pp. 59.
2 Katoh Y, Snead L L, Henager C H, et al. Journal of Nuclear Materials, 2014, 455(1-3), 387.
3 Smith C, Morscher G. Ceramics International, 2018, 44(1), 183.
4 Feng W, Zhang L T, Liu Y S, et al. Materials Science and Engineering: A, 2016, 662, 506.
5 Zhou Y R, Liu H, Yang J H, et al. Journal of Materials and Enginee-ring, 2019, 47(6), 88 (in Chinese).
周怡然, 刘虎, 杨金华, 等.材料工程, 2019, 47(6), 88.
6 Kotani M, Konaka K, Ogihara S. Composites Part A: Applied Science and Manufacturing, 2016, 87, 123.
7 Wing B L, Halloran J W. Journal of the American Ceramic Society, 2017, 100(11), 5286.
8 Dai J X, Sha J J, Wang S H, et al. Acta Aeronautica et Astronautica Sinica, 2015, 36(5), 1704 (in Chinese).
代吉祥, 沙建军, 王首豪, 等.航空学报, 2015, 36(5), 1704.
9 Katrin S, Hagen K. Journal of the European Ceramic Society, 2019, 39(13), 3557.
10 Liu H, Yang J H, Zhou Y R, et al. Journal of Materials and Enginee-ring, 2018, 46(11), 1 (in Chinese).
刘虎, 杨金华, 周怡然, 等.材料工程, 2018, 46(11), 1.
11 Chen D R, Han W J, Li S W, et al. Advanced Creamics, 2018, 39(3), 151 (in Chinese).
陈代荣, 韩伟健, 李思维, 等.现代技术陶瓷, 2018, 39(3), 151.
12 Corman G S, Luthra K L. In: Handbook of ceramic composites, Springer, Boston, 2004, pp. 99.
13 Liu H, Yang J H, Chen Z M, et al. Aerospace Materials & Technology, 2020, 50(6), 48 (in Chinese).
刘虎, 杨金华, 陈子木, 等.宇航材料工艺, 2020, 50(6), 48.
14 Duan S C, Zhu D M, Jia H Y, et al. Ceramics International, 2018, 44(1), 631.
15 Wang H L, Gao S T, Peng S M, et al. Journal of Advanced Ceramics, 2018, 7(2), 169.
16 Sun X N, Yin X W, Fan X M, et al. Journal of the European Ceramic Society, 2018, 38(2), 479.
17 Sullivan R M, Baker E H, Smith C E, et al. Journal of the European Ceramic Society, 2018, 38(15), 4824.
18 Morscher G N. In: Ceramic matrix composites: materials, modeling and technology, John Wiley & Sons, Inc., Hoboken, 2014, pp. 334.
19 Zhao D L, Fan X M, Yin X W, et al. Materials, 2018, 11(8), 1367.
20 Li L, Mao X H, Jian K, et al. Journal of Aeronautical Materials, 2018, 38(3), 26 (in Chinese).
李亮, 毛仙鹤, 简科, 等.航空材料学报, 2018, 38(3), 26.
21 Li L, Jian K, Wang Y F, et al. Materials Reports, 2016, 30(Z2), 308 (in Chinese).
李亮, 简科, 王亦菲, 等.材料导报, 2016, 30(Z2), 308.
22 Chen H, Xu C H, Xiao G C, et al. Ceramics International, 2016, 42(4), 5504.
23 Seo D, Sayar M, Ogawa K. Surface & Coatings Technology, 2012, 206(11-12), 2851.
24 Yan Z Q, Xiong X, Xiao P, et al. Surface & Coatings Technology, 2008, 202(19), 4734.
[1] 唐紫苑, 张淑婷, 杜开平, 宣鹏举, 司丽娜. 包埋渗技术在镍基高温合金中的应用[J]. 材料导报, 2021, 35(Z1): 389-394.
[2] 封帆, 王美玲, 李振华, 陆永浩. 超超临界机组用HR3C奥氏体耐热钢研究进展[J]. 材料导报, 2021, 35(9): 9186-9195.
[3] 杨博, 余金山, 顾全超, 王洪磊, 周新贵. SiCf/SiC复合材料制备研究进展[J]. 材料导报, 2021, 35(3): 3050-3056.
[4] 姚宏伟, 卢一平, 曹志强, 王同敏, 李廷举. FCC/L12共格高熵高温合金的研究进展[J]. 材料导报, 2020, 34(17): 17041-17046.
[5] 卢国锋. Si-O-C界面对C/Si-C-N复合材料性能的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 121-124.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed