MATERIALS AND SUSTAINABLE DEVELOPMENT: ADVANCED MATERIALS FOR CLEAN ENERGY UTILIZATION |
|
|
|
|
|
Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries |
Xing LIANG( ),Guohua GAO,Guangming WU
|
Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 |
|
|
Abstract V2O5 is suitable for lithium ion storage due to its unique layered structure. Compared with traditional cathode materials such as LiMn2O4, LiCoO2 and LiFePO4, V2O5 has the advantages of high theoretical specific capacity, excellent power density, low-cost and abundance, and has attracted extensive attention in the field of cathode materials for lithium-ion batteries. However, its low inherent conductivity and slow lithium ion diffusion coefficient cause the poor capacity retention and rate capability. In addition, repeated phase change will lead to the structural instability during the charge-discharge process, moreover, vanadium oxides can partially dissolve into electrolyte, which are detrimental to long-term cycling performance in electrochemical devices. Because of these restricting factors, it has been an important research hot spot for modifying the V2O5 inherent defects to improve the electrochemical performance of electrode materials. It will be possible for V2O5 cathode materials to exhibit excellent electrochemical performance by preparing nanostructured vanadium oxides to enlarge surface area and shorten the ion diffusion distance, and integrating with conductive materials and doping to enhance the electrical conductivity and cycle stability of materials. In this work, we introduce the improvement on vanadium oxides inherent defects from four aspects, including making nanostructured electrode materials, integrating with conductive materials, adjusting working voltage window and doping metal ions. The influence of various methods on the change of electrochemical performance is discussed as well.
|
Published: 10 January 2018
Online: 2018-01-10
|
|
|
|
|
氧化钒纳米管在(a)空气和(b)N<sub>2</sub>环境下不同温度(300 ℃,400 ℃,500 ℃)热处理后获得的纳米线和纳米管的SEM图以及(c,d)相应的循环性能<sup>[33]</sup>
|
|
<title>氧化钒纳米管在(a)空气和(b)N<sub>2</sub>环境下不同温度(300 ℃,400 ℃,500 ℃)热处理后获得的纳米线和纳米管的SEM图以及(c,d)相应的循环性能<sup>[<xref ref-type="bibr" rid="b33">33</xref>]</sup></title>
|
|
<title>电纺得到的V<sub>2</sub>O<sub>5</sub>纤维在(a)350 ℃、(b)400 ℃、(c)450 ℃、(d)500 ℃、(e)550 ℃、(f)600 ℃烧结后形成的纳米结构的SEM图;(g)V<sub>2</sub>O<sub>5</sub>纳米结构的形成示意图<sup>[<xref ref-type="bibr" rid="b38">38</xref>]</sup></title>
|
|
<title>电纺得到的V<sub>2</sub>O<sub>5</sub>纤维在(a)350 ℃、(b)400 ℃、(c)450 ℃、(d)500 ℃、(e)550 ℃、(f)600 ℃烧结后形成的纳米结构的SEM图;(g)V<sub>2</sub>O<sub>5</sub>纳米结构的形成示意图<sup>[<xref ref-type="bibr" rid="b38">38</xref>]</sup></title>
|
|
<title>(a)超薄氧化钒纳米片的合成示意图及纳米片的(b)SEM和(c)TEM图<sup>[<xref ref-type="bibr" rid="b42">42</xref>]</sup></title>
|
|
<title>(a)超薄氧化钒纳米片的合成示意图及纳米片的(b)SEM和(c)TEM图<sup>[<xref ref-type="bibr" rid="b42">42</xref>]</sup></title>
|
|
<title>多孔V<sub>2</sub>O<sub>5</sub>纳米片的(a)制备过程和(b)TEM图<sup>[<xref ref-type="bibr" rid="b45">45</xref>]</sup></title>
|
|
<title>(a)非原位制备氧化石墨烯包覆V<sub>2</sub>O<sub>5</sub>纳米棒的示意图;(b) 石墨烯包覆V<sub>2</sub>O<sub>5</sub>纳米棒的TEM图及相应的循环性能<sup>[<xref ref-type="bibr" rid="b73">73</xref>]</sup></title>
|
|
<title>(a)MWCNTs-C<sub>16</sub>-VO<i><sub>x</sub></i> 的三相复合材料形成示意图;(b)烧结获得的MWCNTs-V<sub>2</sub>O<sub>5</sub>复合材料的SEM图;(c)MWCNTs-V<sub>2</sub>O<sub>5</sub>和V<sub>2</sub>O<sub>5</sub>颗粒的倍率性能<sup>[<xref ref-type="bibr" rid="b74">74</xref>]</sup></title>
|
|
<title>(a)MWCNTs-C<sub>16</sub>-VO<i><sub>x</sub></i> 的三相复合材料形成示意图;(b)烧结获得的MWCNTs-V<sub>2</sub>O<sub>5</sub>复合材料的SEM图;(c)MWCNTs-V<sub>2</sub>O<sub>5</sub>和V<sub>2</sub>O<sub>5</sub>颗粒的倍率性能<sup>[<xref ref-type="bibr" rid="b74">74</xref>]</sup></title>
|
|
<title>烧结前V<sub>2</sub>O<sub>5</sub>/介孔碳的(a)STEM图和(b)倍率性能<sup>[<xref ref-type="bibr" rid="b76">76</xref>]</sup></title>
|
|
<title>(a)化学气相沉积包覆碳的示意图;(b)包覆结果的形貌图<sup>[<xref ref-type="bibr" rid="b78">78</xref>]</sup></title>
|
|
<title>烧结前V<sub>2</sub>O<sub>5</sub>/介孔碳的(a)STEM图和(b)倍率性能<sup>[<xref ref-type="bibr" rid="b76">76</xref>]</sup></title>
|
|
(a)化学气相沉积包覆碳的示意图;(b)包覆结果的形貌图[78]
|
|
(a)化学气相沉积包覆碳的示意图;(b)包覆结果的形貌图[78]
|
|
(a)化学气相沉积包覆碳的示意图;(b)包覆结果的形貌图[78]
|
|
(a)自组装的V2O5纳米片/石墨烯复合物的形成示意图;(b)复合物的SEM图;(c)复合物在2C(1C=300 mA/g)密度下的循环性能[75]
|
|
烧结前V2O5/介孔碳的(a)STEM图和(b)倍率性能[76]
|
|
(a)化学气相沉积包覆碳的示意图;(b)包覆结果的形貌图[78]
|
|
多孔Fe0.12V2O5纳米线阵列的(a)SEM图;处理不同时间的(b)XRD谱;(c)循环性能;(d)1~4 V下的倍率性能[85]
|
|
多孔Fe0.12V2O5纳米线阵列的(a)SEM图;处理不同时间的(b)XRD谱;(c)循环性能;(d)1~4 V下的倍率性能[85]
|
|
多孔Fe0.12V2O5纳米线阵列的(a)SEM图;处理不同时间的(b)XRD谱;(c)循环性能;(d)1~4 V下的倍率性能[85]
|
|
多孔Fe0.12V2O5纳米线阵列的(a)SEM图;处理不同时间的(b)XRD谱;(c)循环性能;(d)1~4 V下的倍率性能[85]
|
|
多孔Fe0.12V2O5纳米线阵列的(a)SEM图;处理不同时间的(b)XRD谱;(c)循环性能;(d)1~4 V下的倍率性能[85]
|
|
多孔Fe0.12V2O5纳米线阵列的(a)SEM图;处理不同时间的(b)XRD谱;(c)循环性能;(d)1~4 V下的倍率性能[85]
|
|
金属离子掺杂的V2O5的电化学性能[82,83,84](电子版为彩图)
|
|
多孔Fe0.12V2O5纳米线阵列的(a)SEM图;处理不同时间的(b)XRD谱;(c)循环性能;(d)1~4 V下的倍率性能[85]
|
[1] | Wu H, Yu G, Pan L , et al. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles[J]. Nature Communications, 2013,4:1943. | [2] | Wu H, Chan G, Choi J W , et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nature Nanotechnology, 2012,7(5):310. | [3] | Chmiola J, Largeot C, Taberna P L , et al. Monolithic carbide-derived carbon films for micro-supercapacitors[J]. Science, 2010,328(5977):480. | [4] | Fergus J W . Recent developments in cathode materials for lithium ion batteries[J]. Journal of Power Sources, 2010,195(4):939. | [5] | Wang Y, Cao G Z . Developments in nanostructured cathode materials for high-performance lithium-ion batteries[J]. Advanced Materials, 2008,20(12):2251. | [6] | Li X, Cheng F, Guo B , et al. Template-synthesized LiCoO2, LiMn2O4 and LiNi0.8Co0.2O2 nanotubes as the cathode materials of lithium ion batteries[J]. The Journal of Physical Chemistry B, 2005,109(29):14017. | [7] | Chen J . Recent progress in advanced materials for lithium ion batteries[J]. Materials, 2013,6(1):156. | [8] | Xu J, Lin F, Nordlund D , et al. Elucidation of the surface characteristics and electrochemistry of high-performance LiNiO2[J]. Chemical Communications, 2016,52(22):4239. | [9] | Liu Q, Mao D, Chang C , et al. Phase conversion and morphology evolution during hydrothermal preparation of orthorhombic LiMnO2 nanorods for lithium ion battery application[J]. Journal of Power Sources, 2007,173(1):538. | [10] | Yamada A, Chung S C, Hinokuma K . Optimized LiFePO4 for lithium battery cathodes[J]. Journal of the Electrochemical Society, 2001,148(3):A224. | [11] | Wang Y, Takahashi K, Lee K H , et al. Nanostructured vanadium oxide electrodes for enhanced lithium-ion intercalation[J]. Advanced Functional Materials, 2006,16(9):1133. | [12] | Wang Y, Cao G Z . Synjournal and enhanced intercalation properties of nanostructured vanadium oxides[J]. Chemistry of Materials, 2006,18(12):2787. | [13] | Yang Y, Li L, Fei H , et al. Graphene nanoribbon/V2O5 cathodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014,6(12):9590. | [14] | Wang X, Jia W, Wang L , et al. Simple in situ synjournal of carbon-supported and nanosheet-assembled vanadium oxide for ultra-high rate anode and cathode materials of lithium ion batteries[J]. Journal of Materials Chemistry A, 2016,4(36):13907. | [15] | Song H, Liu C, Zhang C , et al. Self-doped V 4+-V2O5 nanoflake for 2 Li-ion intercalation with enhanced rate and cycling performance [J]. Nano Energy, 2016,22:1. | [16] | Kim T, Shin J, You T S , et al. Thermally controlled V2O5 nanoparticles as cathode materials for lithium-ion batteries with enhanced rate capability[J]. Electrochimica Acta, 2015,164:227. | [17] | Sudant G, Baudrin E, Dunn B , et al. Synjournal and electrochemical properties of vanadium oxide aerogels prepared by a freeze-drying process[J]. Journal of the Electrochemical Society, 2004,151(5):A666. | [18] | Mai L Q, Tian X, Xu X , et al. Nanowire electrodes for electrochemical energy storage devices[J]. Chemical Reviews, 2014,114(23):11828. | [19] | Ding S, Chen J S, Lou X W . One-dimensional hierarchical structures composed of novel metal oxide nanosheets on a carbon nanotube backbone and their lithium-storage properties[J]. Advanced Functional Materials, 2011,21(21):4120. | [20] | Jiang J, Li Y, Liu J , et al. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes[J]. Nanoscale, 2011,3(1):45. | [21] | Meduri P, Pendyala C, Kumar V , et al. Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries[J]. Nano Letters, 2009,9(2):612. | [22] | Szczech J R, Jin S . Nanostructured silicon for high capacity lithium battery anodes[J]. Energy & Environmental Science, 2011,4(1):56. | [23] | Zhang L, Zhao K, Xu W , et al. Mesoporous VO2 nanowires with excellent cycling stability and enhanced rate capability for lithium batteries[J]. RSC Advances, 2014,4(63):33332. | [24] | W?rle M, Krumeich F, Bieri F , et al. Flexible V7O16 layers as the common structural element of vanadium oxide nanotubes and a new crystalline vanadate[J]. Zeitschrift fur Anorganische Chemistry, 2002,628(12):2778. | [25] | Cui C J, Wu G M, Shen J , et al. Synjournal and electrochemical performance of lithium vanadium oxide nanotubes as cathodes for rechargeable lithium-ion batteries[J]. Electrochimica Acta, 2010,55(7):2536. | [26] | Cui C J, Wu G M, Yang H Y , et al. A new high-performance cathode material for rechargeable lithium-ion batteries:Polypyrrole/vanadium oxide nanotubes[J]. Electrochimica Acta, 2010,55(28):8870. | [27] | Sediri F, Gharbi N . From crystalline V2O5 to nanostructured vanadium oxides using aromatic amines as templates[J]. Journal of Physics and Chemistry of Solids, 2007,68(10):1821. | [28] | Petkov V, Zavalij P Y, Lutta S , et al. Structure beyond bragg: Study of V2O5 nanotubes[J]. Physical Review B, 2004,69(8):085410. | [29] | Wang Y, Takahashi K, Shang H , et al. Synjournal and electrochemical properties of vanadium pentoxide nanotube arrays[J]. The Journal of Physical Chemistry B, 2005,109(8):3085. | [30] | Cui C J, Wu G M, Yang H Y , et al. Synjournal, characterization and electrochemical impedance spectroscopy of VOx-NTs/PPy composites[J]. Solid State Communications, 2010,150(37-38):1807. | [31] | Zhou X W, Wu G M, Gao G H , et al. Electrochemical performance improvement of vanadium oxide nanotubes as cathode materials for lithium ion batteries through ferric ion exchange technique[J]. Journal of Physical Chemistry C, 2012,116(41):21685. | [32] | Zhou X W, Cui C J, Wu G M , et al. A novel and facile way to synthesize vanadium pentoxide nanospike as cathode materials for high performance lithium ion batteries[J]. Journal of Power Sources, 2013,238:95. | [33] | Huang S Z, Cai Y, Jin J , et al. Annealed vanadium oxide nanowires and nanotubes as high performance cathode materials for lithium ion batteries[J]. Journal of Materials Chemistry A, 2014,2(34):14099. | [34] | Mai L Q, Xu L, Han C , et al. Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries[J]. Nano Letters, 2010,10(11):4750. | [35] | Cheah Y L, Gupta N, Pramana S S , et al. Morphology, structure and electrochemical properties of single phase electrospun vanadium pentoxide nanofibers for lithium ion batteries[J]. Journal of Power Sources, 2011,196(15):6465. | [36] | Zhu C, Shu J, Wu X , et al. Electrospun V2O5 micro/nanorods as cathode materials for lithium ion battery[J]. Journal of Electroanalytical Chemistry, 2015,759(2):184. | [37] | Li Z, Liu G, Guo M , et al. Electrospun porous vanadium pentoxide nanotubes as a high-performance cathode material for lithium-ion batteries[J]. Electrochimica Acta, 2015,173:131. | [38] | Wang H G, Ma D L, Huang Y , et al. Electrospun V2O5 nanostructures with controllable morphology as high-performance cathode materials for lithium-ion batteries[J]. Chemistry—A European Journal, 2012,18(29):8987. | [39] | Qin M, Liang Q, Pan A , et al. Template-free synjournal of vanadium oxides nanobelt arrays as high-rate cathode materials for lithium ion batteries[J]. Journal of Power Sources, 2014,268:700. | [40] | Naguib M, Mashtalir O, Carle J , et al. Two-dimensional transition metal carbides[J]. ACS Nano, 2012,6(2):1322. | [41] | Rui X, Lu Z, Yu H , et al. Ultrathin V2O5 nanosheet cathodes:Realizing ultrafast reversible lithium storage[J]. Nanoscale, 2013,5(2):556. | [42] | An Q, Wei Q, Mai L , et al. Supercritically exfoliated ultrathin vanadium pentoxide nanosheets with high rate capability for lithium batteries[J]. Physical Chemistry Chemical Physics, 2013,15(39):16828. | [43] | Liang S, Hu Y, Nie Z , et al. Template-free synjournal of ultra-large V2O5 nanosheets with exceptional small thickness for high-performance lithium-ion batteries[J]. Nano Energy, 2015,13:58. | [44] | Song H, Zhang C, Liu Y , et al. Facile synjournal of mesoporous V2O5 nanosheets with superior rate capability and excellent cycling stability for lithium ion batteries[J]. Journal of Power Sources, 2015,294:1. | [45] | Su Y, Pan A, Wang Y , et al. Template-assisted formation of porous vanadium oxide as high performance cathode materials for lithium ion batteries[J]. Journal of Power Sources, 2015,295:254. | [46] | Peng X, Zhang X, Wang L , et al. Hydrogenated V2O5 nanosheets for superior lithium storage properties[J]. Advanced Functional Materials, 2016,26(5):784. | [47] | Guo Y G, Hu J S, Wan L J . Nanostructured materials for electrochemical energy conversion and storage devices[J]. Advanced Materials, 2008,20(15):2878. | [48] | Li H Y, Wei C, Wang L , et al. Hierarchical vanadium oxide microspheres forming from hyperbranched nanoribbons as remarkably high performance electrode materials for supercapacitors[J]. Journal of Materials Chemistry A, 2015,3(45):22892. | [49] | Dong Y, Wei H, Liu W , et al. Template-free synjournal of V2O5 hierarchical nanosheet-assembled microspheres with excellent cycling stability[J]. Journal of Power Sources, 2015,285:538. | [50] | Pan A, Wu H B, Yu L , et al. Synjournal of hierarchical three-dimensional vanadium oxide microstructures as high-capacity cathode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2012,4(8):3874. | [51] | Pan A Q, Wu H B, Zhang L , et al. Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties[J]. Energy & Environmental Science, 2013,6(5):1476. | [52] | Chen L, Gu X, Jiang X , et al. Hierarchical vanadium pentoxide microflowers with excellent long-term cyclability at high rates for lithium ion batteries[J]. Journal of Power Sources, 2014,272:991. | [53] | Wang S, Li S, Sun Y , et al. Three-dimensional porous V2O5 cathode with ultra high rate capability[J]. Energy & Environmental Science, 2011,4(8):2854. | [54] | Tang Y, Rui X, Zhang Y , et al. Vanadium pentoxide cathode materials for high-performance lithium-ion batteries enabled by a hierarchical nanoflower structure via an electrochemical process[J]. Journal of Materials Chemistry A, 2013,1(1):82. | [55] | Ko Y N, Chan Kang Y, Park S B . A new strategy for synthesizing yolk-shell V2O5 powders with low melting temperature for high performance Li-ion batteries[J]. Nanoscale, 2013,5(19):8899. | [56] | Su D W, Dou S X, Wang G X . Hierarchical orthorhombic V2O5 hollow nanospheres as high performance cathode materials for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2014,2(29):11185. | [57] | Tan Q, Zhu Q, Pan A , et al. Template-free synjournal of β-Na0.33-V2O5 microspheres as cathode materials for lithium-ion batteries[J]. CrystEngComm, 2015,17:4774. | [58] | Pan A, Wu H B, Yu L , et al. Template-free synjournal of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries[J]. Angewandte Chemie, 2013,125(8):2282. | [59] | Cao A M, Hu J S, Liang H P , et al. Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries[J]. Angewandte Chemie International Edition, 2005,44(28):4391. | [60] | Wu H B, Pan A, Hng H H , et al. Template-assisted formation of rattle-type V2O5 hollow microspheres with enhanced lithium storage properties[J]. Advanced Functional Materials, 2013,23(45):5669. | [61] | Wang S, Lu Z, Wang D , et al. Porous monodisperse V2O5 microspheres as cathode materials for lithium-ion batteries[J]. Journal of Materials Chemistry, 2011,21(17):6365. | [62] | Mai L Q, An Q, Wei Q , et al. Nanoflakes-assembled three-dimensional hollow-porous V2O5 as lithium storage cathodes with high-rate capacity[J]. Small, 2014,10(15):3032. | [63] | Chen M, Xia X, Yuan J , et al. Free-standing three-dimensional continuous multilayer V2O5 hollow sphere arrays as high-performance cathode for lithium batteries[J]. Journal of Power Sources, 2015,288:145. | [64] | Qie L, Chen W M, Wang Z H , et al. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability[J]. Advanced Materials, 2012,24(15):2047. | [65] | Tang Y, Zhang Y, Deng J , et al. Unravelling the correlation between the aspect ratio of nanotubular structures and their electrochemical performance to achieve high-rate and long-life lithium-ion batteries[J]. Angewandte Chemie International Edition, 2014,53(49):13488. | [66] | Zhao H, Pan L, Xing S , et al. Vanadium oxides-reduced graphene oxide composite for lithium-ion batteries and supercapacitors with improved electrochemical performance[J]. Journal of Power Sources, 2013,222:21. | [67] | Li S, Wu D, Cheng C , et al. Polyaniline-coupled multifunctional 2D metal oxide/hydroxide graphene nanohybrids[J]. Angewandte Chemie, 2013,125(46):12327. | [68] | Sathiya M, Prakash A, Ramesha K , et al. V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage[J]. Journal of the American Chemical Society, 2011,133(40):16291. | [69] | Li Z L, Zhu Q Y, Huang S N , et al. Interpenetrating network V2O5 nanosheets/carbon nanotubes nanocomposite for fast lithium storage[J]. RSC Advances, 2014,4(87):46624. | [70] | Wu Y J, Gao G H, Wu G M . Self-assembled three-dimensional hierarchical porous V2O5/graphene hybrid aerogels for supercapacitors with high energy density and long cycle life[J]. Journal of Materials Chemistry A, 2015,3(5):1828. | [71] | Liu Q, Li Z F, Liu Y , et al. Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries[J]. Nature Communications, 2015,6:6127. | [72] | Pandey G P, Liu T, Brown E , et al. Mesoporous hybrids of reduced graphene oxide and vanadium pentoxide for enhanced performance in lithium-ion batteries and electrochemical capacitors[J]. ACS Applied Materials & Interfaces, 2016,8(14):9200. | [73] | Chen D, Quan H, Luo S , et al. Reduced graphene oxide enwrapped vanadium pentoxide nanorods as cathode materials for lithium-ion batteries[J]. Physica E:Low-dimensional Systems and Nanostructures, 2014,56:231. | [74] | Zhou X W, Wu G M, Wu J D , et al. Multiwalled carbon nanotubes-V2O5 integrated composite with nanosized architecture as a cathode material for high performance lithium ion batteries[J]. Journal of Materials Chemistry A, 2013,1(48):15459. | [75] | Cheng J, Wang B, Xin H L , et al. Self-assembled V2O5 nanosheets/reduced graphene oxide hierarchical nanocomposite as a high-performance cathode material for lithium ion batteries[J]. Journal of Materials Chemistry A, 2013,1(36):10814. | [76] | Ihsan M, Meng Q, Li L , et al. V2O5/mesoporous carbon composite as a cathode material for lithium-ion batteries[J]. Electrochimica Acta, 2015,173:172. | [77] | Shi W, Rui X, Zhu J , et al. Design of nanostructured hybrid materials based on carbon and metal oxides for Li ion batteries[J]. The Journal of Physical Chemistry C, 2012,116(51):26685. | [78] | Cheah Y L, von Hagen R, Aravindan V , et al. High-rate and elevated temperature performance of electrospun V2O5 nanofibers carbon-coated by plasma enhanced chemical vapour deposition[J]. Nano Energy, 2013,2(1):57. | [79] | Wang X, Huang Y, Jia D , et al. Self-assembled sandwich-like vanadium oxide/graphene mesoporous composite as high-capacity anode material for lithium ion batteries[J]. Inorganic Chemistry, 2015,54(24):11799. | [80] | Yu R, Zhang C, Meng Q , et al. Facile synjournal of hierarchical networks composed of highly interconnected V2O5 nanosheets assembled on carbon nanotubes and their superior lithium storage properties[J]. ACS Applied Materials & Interfaces, 2013,5(23):12394. | [81] | Li G, Qiu Y, Hou Y , et al. Synjournal of V2O5 hierarchical structures for long cycle-life lithium-ion storage[J]. Journal of Materials Chemistry A, 2015,3(3):1103. | [82] | Li Y, Yao J, Uchaker E , et al. Sn-doped V2O5 film with enhanced lithium-ion storage performance[J]. The Journal of Physical Chemistry C, 2013,117(45):23507. | [83] | Cheah Y L, Aravindan V, Madhavi S . Improved elevated temperature performance of Al-intercalated V2O5 electrospun nanofibers for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2012,4(6):3270. | [84] | Wei Y, Ryu C W, Kim K B . Cu-doped V2O5 as a high-energy density cathode material for rechargeable lithium batteries[J]. Journal of Alloys and Compounds, 2008,459(1-2):L13. | [85] | Cao Y, Fang D, Liu R , et al. Three-dimensional porous iron vanadate nanowire arrays as a high-performance lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2015,7(50):27685. | [86] | Li S R, Ge S Y, Qiao Y , et al. Three-dimensional porous Fe0.1-V2O5.15 thin film as a cathode material for lithium ion batteries[J]. Electrochimica Acta, 2012,64:81. | [87] | Lu Y, Wu J, Liu J , et al. Facile synjournal of Na0.33V2O5 nanosheet-graphene hybrids as ultrahigh performance cathode materials for lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2015,7(31):17433. | [88] | Moretti A, Maroni F, Osada I , et al. V2O5 aerogel as a versatile cathode material for lithium and sodium batteries[J]. ChemElectroChem, 2015,2(4):529. | [89] | Sathiya M, Abakumov A M, Foix D , et al. Origin of voltage decay in high-capacity layered oxide electrodes[J]. Nature Materials, 2015,14(2):230. | [90] | Laisa C P, Nanda Kumar A K, Selva Chandrasekaran S, et al. A comparative study on electrochemical cycling stability of lithium rich layered cathode materials Li1.2Ni0.13M0.13Mn0.54O2 where M=Fe or Co[J]. Journal of Power Sources, 2016,324:462. | [91] | Yu M, Zeng Y, Han Y , et al. Valence-optimized vanadium oxide supercapacitor electrodes exhibit ultrahigh capacitance and super-long cyclic durability of 100 000 cycles[J]. Advanced Functional Materials, 2015,25(23):3534. | [92] | Song Y, Liu T Y, Yao B , et al. Amorphous mixed-valence vanadium oxide/exfoliated carbon cloth structure shows a record high cycling stability[J]. Small, 2017,13(16):1700067. |
|
|
|
|