Please wait a minute...
材料导报  2021, Vol. 35 Issue (21): 21151-21158    https://doi.org/10.11896/cldb.20040261
  无机非金属及其复合材料 |
先驱体转化陶瓷涂层的裂解方法研究进展
李恩重1, 郭伟玲1, 刘军2, 于鹤龙1, 徐滨士1
1 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
2 陆军装甲兵学院机械产品再制造国家工程研究中心,北京 100072
Research Progress in Pyrolysis Method of Polymer Derived Ceramic Coatings
LI Enzhong1, GUO Weiling1, LIU Jun2, YU Helong1, XU Binshi1
1 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
2 National Engineering Research Center for Mechanical Product Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
下载:  全 文 ( PDF ) ( 9064KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着金属零部件服役工况条件的日益苛刻,针对金属零部件不同的服役条件和失效特点,选择不同的陶瓷材料体系,采用适当工艺技术在金属零部件表面制备高性能的陶瓷涂层防护涂层并赋予其特殊功能,已成为解决金属零部件在苛刻工况下可靠服役的有效途径。先驱体转化陶瓷法作为一种原位制备陶瓷涂层的新型方法,利用先驱体聚合物良好的流动性、成型性、分子结构可设计性等特点,将先驱体涂层通过裂解转化为陶瓷涂层,在材料表面形成致密的防护涂层。
裂解是先驱体从有机物转化为陶瓷涂层的重要途径,传统加热炉裂解利用程序化升温可在金属、多孔材料、纤维或纤维增强复合材料表面实现陶瓷涂层的连续化、批量化制备,设备简单,易于控制,但加热炉裂解对基体的热影响大,无法在熔点较低或结构复杂的基体上制备陶瓷涂层。激光裂解可选择性地控制热量的输入,裂解迅速、加热均匀,对基体热影响小,可制备出具有特殊成分的陶瓷涂层,但先驱体要能够吸收激光,激光裂解效率较低。离子辐照是无热裂解方式,裂解迅速,但效率低、成本较高。
本文总结了先驱体转化陶瓷涂层裂解方法的研究进展,分析了加热炉裂解、激光裂解和离子辐照裂解的优缺点。未来将探索新的可控制备陶瓷涂层的方法与技术,揭示先驱体转化陶瓷微观结构的演变规律,实现陶瓷涂层致密化和裂纹缺陷的精确控制是今后需要重点发展的方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李恩重
郭伟玲
刘军
于鹤龙
徐滨士
关键词:  先驱体转化陶瓷法  硅基聚合物  裂解方法  陶瓷涂层    
Abstract: As the service environment of metal parts become more and more demanding, according to the different environment and failure characteristics of metal parts, different ceramic material systems and appropriate technologies are selected to prepare high-performance ceramic protective coating on the surface of metal parts and giving it special functions. The preparation of ceramic protective coatings on metal parts has become an effective way to solve the problem of reliable service of metal parts under harsh working conditions. As a new method of in-situ preparation of ceramic coating, polymer derived ceramic method takes advantage of the good fluidity, formability and designability of molecular structure of the precursor polymer, the polymer coating transformed into ceramic coating by pyrolysis, and dense protective coating is formed on the surface of the substrate material.
Pyrolysis is an important way for precursors to transform from organic to ceramic coating. Traditional furnace pyrolysis uses setting heating program to achieve continuous and batch preparation of ceramic coatings on the surface of metals, porous materials, fibers or fiber-reinforced composite materials. The furnace pyrolysis simple and easy to control, but it has a great thermal effect on the substrate, then it is impossible to prepare ceramic coating on substrate with low melting point or complex structure. Laser pyrolysis can selectively control the heat input, with uniform heating rate and fast pyrolysis, and laser pyrolysis has little thermal effect on the substrate. Ceramic coatings with special compositions can be prepared by laser pyrolysis, while the precursor must be able to absorb laser, and the efficiency of laser pyrolysis is low. Ion beam irradiation is a non-thermal cracking method, which the pyrolysis speed is high, but has low efficiency and high cost.
In this paper, the research progress in pyrolysis method of polymer derived ceramic coatings is summarized. The advantages and disadvantages of pyrolysis methods including furnace pyrolysis, laser pyrolysis and ion irradiation for polymer derived ceramic coatings are compared. In the future, it is necessary to explore new methods and technologies for controllable preparation of polymer derived ceramic coatings, reveal the evolution law microstructure from polymers to ceramic coatings, realize the accurate control of the preparation of the densification ceramic coatings which the crack defects can be precisely controlled.
Key words:  polymer-derived ceramics    organosilicon polymers    pyrolysis method    ceramic coatings
               出版日期:  2021-11-10      发布日期:  2021-11-30
ZTFLH:  TB33  
基金资助: 国家自然科学基金资助项目(51805540);北京市自然科学基金资助项目(3192040);国家重点研发计划项目(2017YFF0207905)
通讯作者:  enzhongl@sina.com   
作者简介: 
李恩重,陆军装甲兵学院装备再制造技术国防科技重点实验室副研究员,主要从事先进陶瓷材料、纳米材料的研发及在表面工程、再制造工程的应用等研究工作。近年来,主持国家自然基金、北京市自然基金、装备预研基金等多项科研项目,参与国家重点研发计划项目、中国工程院重大咨询项目等,发表学术论文40余篇,主、参编专著10余部,获授权国家发明专利5项,获省部级科技奖励3项。
引用本文:    
李恩重, 郭伟玲, 刘军, 于鹤龙, 徐滨士. 先驱体转化陶瓷涂层的裂解方法研究进展[J]. 材料导报, 2021, 35(21): 21151-21158.
LI Enzhong, GUO Weiling, LIU Jun, YU Helong, XU Binshi. Research Progress in Pyrolysis Method of Polymer Derived Ceramic Coatings. Materials Reports, 2021, 35(21): 21151-21158.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040261  或          http://www.mater-rep.com/CN/Y2021/V35/I21/21151
1 Xu B S.Introduction to green remanufacturing engineering, Harbin Institute of Technology Press, China, 2019 (in Chinese).
徐滨士.绿色再制造工程导论, 哈尔滨工业大学出版社, 2019.
2 Zhang J, Jung Y G.Advanced ceramic and metallic coating and thin film materials for energy and environmental applications, Springer, Switzerland, 2018.
3 Wang K S, Unger J, Torrey J D.Journal of the European Ceramic Society, 2014, 34(15), 3597.
4 Chen Z F.Ceramic fibers and coatings: advanced materials for the twenty-first century, Science Press, China, 2018(in Chinese).
陈照峰.陶瓷纤维和涂层:21世纪先进材料, 科学出版社, 2018.
5 Barroso G, Kraus T, Degenhardt U, et al.Advacned Engineering Mate-rials, 2016, 18(5), 746.
6 Fu S Y, Zhu M, Zhu Y F.Journal of Advanced Ceramics, 2019, 8(4), 457.
7 Motz G, Hacker J, Ziegler G. Ceramic Engineering and Science Procee-dings, 2000, 21(4), 307.
8 Liu W, Cao Y J, Cheng L F, et al. Journal of the European Ceramic Society, 2018, 38(2),469.
9 Goerke O, Ferike E, Schubert H. High temperature ceramic matrix composites,Weinheim: Wiley-VCH Verlag GmbH, Germany,2001.
10 Xu H, Han T, Jin Z H, et al.Rare Metal Materials and Engineering, 2013(S1), 273(in Chinese).
徐宏, 韩涛, 金志浩, 等.稀有金属材料与工程, 2013(S1), 273.
11 Colombo P, Mera G, Riedel R, et al.Journal of the American Ceramic Society, 2010, 93(7), 1805.
12 Ivana P, Milan P, Peter Š, et al.International Journal of Applied Ceramic Technology, 2020, 17(3), 998.
13 Tian H, Wang Y M, Liu Y, et al.Current Applied Physics, 2013, 13(1), 1.
14 Günthner M, Kraus T, Krenkel W, et al.International Journal of Applied Ceramic Technology, 2009, 6(3), 373.
15 Torrey J D, Bordia R K.Journal of the European Ceramic Society, 2008, 91(1), 41.
16 Yang D X, Yu Y X, Zhao X F, et al.Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21(3), 534.
17 Nguyen M D, Bang J W, Bin A S , et al. Journal of the European Cera-mic Society, 2017, 37(5), 2001.
18 Li C H, Huang K L, Li X D, et al.Materials Science & Technology, 2005, 13(2), 222(in Chinese).
李春华, 黄可龙, 李效东, 等.材料科学与工艺, 2005, 13(2), 222.
19 Liu H L, Zhao X L, Tian C Y, et al.Journal of Synthetic Crystals, 2013, 42(9), 1960(in Chinese).
刘洪丽, 赵雪莲, 田春英, 等.人工晶体学报, 2013, 42(9), 1960.
20 Fu Z Q, Tang C H, Liang T X.Surface and Coatings Technology, 2006, 200(12-13), 3950.
21 He Z, Lian P F, Song Y, et al.Journal of the European Ceramic Society, 2018, 38, 453.
22 He Z, Song J L, Lian P F, et al. Nuclear Engineering and Technology, 2019, 51(5),1390.
23 Gadow R, Kern F.Ceramic Engineering and Science Proceedings, 2008, 24(4), 239.
24 Kern F, Gadow R.Surface and Coatings Technology, 2002, 151-152, 418.
25 Shayed M A , Hund R D , Cherif C.Journal of Industrial Textiles, 2015, 44(5), 682.
26 Qiu X X, Han K Q, Jia J, et al.Materials Research Innovations, 2013, 17(S1),75.
27 Corral E L, Loehman R E.Journal of the American Ceramic Society, 2008, 91(5),1495.
28 Fan S W, Ma X, Li Z, et al.Ceramic International, 2018, 44(1),175.
29 Niu M, Wang H J, Su L, et al. Ceramics International, 2016, 42(9),10614.
30 Tóth S, Németh P, Rácz P, et al.Diamond and Related Materials, 2018, 81, 96.
31 Colombo P, Martucci A, Fogato O, et al. Journal of the American Cera-mic Society, 2001, 84(1), 224.
32 Liu J, Qiao Y L, Zhang P, et al.Surface and Coatings Technology, 2017, 321, 491.
33 Monaco G, Suman M, Garolib D, et al.Journal of Electron Spectroscopy and Related Phenomena, 2011, 184(3-6), 240.
34 Monaco G, Gastaldi M, Nicolosi P, et al.European Physical Journal Special Topics, 2009, 169(1), 159.
35 Qiao Y L, Zhao J X, Xue Y C, et al.Surface Technology, 2017(10), 134(in Chinese).
乔玉林, 赵吉鑫, 薛胤昌,等.表面技术, 2017(10), 134.
36 Xue Y C, Qiao Y L, Liu J, et al.Journal of the Chinese Ceramic Society, 2016, 44(10), 1482(in Chinese).
薛胤昌, 乔玉林, 刘军,等.硅酸盐学报, 2016, 44(10),1482.
37 Liu H H, Du B, Chu Y H.Journal of the American Ceramic Society, 2020, 103(5), 2970.
38 Tao J, Cheng H, Chen Z F, et al. Aerospace Materials & Technology, 2008(2),39(in Chinese).
陶杰, 承涵, 陈照峰, 等.宇航材料工艺, 2008(2),39.
39 Jaleh B, Ghasemi S, Torkamany M J, et al.Applied Surface Science, 2017, 427, 640.
40 Tangermann-Gerk K, Barroso G, Weisenseel B, et al.Materials & Design, 2016, 109, 644.
41 Zhao J X, Qiao Y L, Xue Y C, et al.Journal of Synthetic Crystals, 2017, 46(9), 222(in Chinese).
赵吉鑫, 乔玉林, 薛胤昌, 等.人工晶体学报, 2017, 46(9), 222.
42 Zhao J X, Qiao Y L, Xue Y C, et al.Chinese Journal of Lasers, 2017, 44(10), 97(in Chinese).
赵吉鑫, 乔玉林, 薛胤昌, 等.中国激光, 2017, 44(10), 97.
43 Fleaca C T, Dumitrache F, Sandu I, et al.Applied Physics A, 2017, 123(11), 695.
44 Müller A, Herlin-Boime N, Tenegal F, et al.Journal of European Ceramic Society, 2003, 23(1),37.
45 Horcher A, Tangermann-Gerk K, Barroso G, et al.Journal of the Euro-pean Ceramic Society, 2020, 40(7), 2642.
46 Yamada I. Materials processing by cluster ion beams: history, technology, and applications, CRC Press, USA, 2015.
47 Pivin J C, Sendova-Vassileva M, Colombo P, et al.Materials Science and Engineering:B, 2000, 69-70,574.
48 Yamada I, Mastsuo J, Toyoda N, et al.Materials Science and Engineering R, 2001, 34(6), 231.
49 Yamada I, Mastsuo J, Toyoda N, et al.Current Opinion in Solid State and Materials Science, 2015, 19(1),12.
50 Dietmar F.Fundamentals of ion-irradiated polymers, Springer-Verlag, Germany, 2004.
51 Bonis A D, Bearzotti A, Marletta G.Nuclear Instruments and Methods in Physics Research B:Beam Interactions with Materials and Atoms,1999, 151(1-4), 101.
52 Guenther M , Gerlach G, Suchaneck G, et al.Surface and Coatings Technology, 2002, 158-159,108.
53 Pivin J C, Colombo P, Tonidandel M.Journal of the American Ceramic Society, 1996, 79(7),1967.
54 Pivin J C, Colombo P.Journal of Materials Science, 1997, 32(23), 6163.
55 Pivin J C, Colombo P, Sendova-Vassileva M, et al. Nuclear Instruments and Methods in Physics Research B, 1998,141,652.
56 Pivin J C, Colombo P, Sorarù G D.Journal of the American Ceramic Society, 2000, 83(4),713.
57 Pignataro B, Pivin J C, Marletta G. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2002,191(1-4), 772.
58 Gelamo R V, Durrant S F, Trasferetti B C, et al.Plasma Processes and Polymers, 2007, 4(4),489.
59 Gelamo R V, Moraes M A B D, Trasferetti B C, et al. Chemistry of Materials, 2005, 17(23), 5789.
60 Cruz N C D, Lopes B B, Rangel E C, et al.Surface and Coating Techno-logy, 2008, 203(5-7), 534.
61 Lopes B B, Schreiner W, Davanzo C U, et al.Surface and Coating Technology, 2010, 204(18-19), 3059.
62 Pivin J C, Colombo P, Martucci A, et al. Journal of Sol-Gel Science and Technology, 2003, 26(1-3), 251.
[1] 程海松, 刘岗, 雷刚, 谭俊, 陈春彦, 梁勇, 苏岳亮, 吴开颜, 杜永斌. 燃煤锅炉受热面高温腐蚀防护涂层技术研究进展[J]. 材料导报, 2020, 34(Z1): 433-435.
[2] 施佳鑫, 朱卫华, 朱红梅, 陈志勇, 刘晋京, 史新灵, 王新林. CaB6对激光熔覆生物陶瓷涂层组织和生物学性能的影响[J]. 材料导报, 2020, 34(10): 10030-10034.
[3] 马晓波, 王进卿, 池作和, 张光学, 詹明秀. h-BN基复合陶瓷涂层防锅炉受热面的硫酸盐腐蚀性能[J]. 材料导报, 2019, 33(6): 960-964.
[4] 孙丽丽, 王尊策, 王勇. AC-HVAF非晶和金属陶瓷涂层在压裂液中空蚀行为研究*[J]. 《材料导报》期刊社, 2017, 31(16): 89-93.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed