Please wait a minute...
材料导报  2021, Vol. 35 Issue (10): 10141-10146    https://doi.org/10.11896/cldb.20050020
  金属与金属基复合材料 |
金属Ni修饰的石墨烯及其对等离子喷涂NiCoCrAlY涂层力学性能的影响
张宇慧1, 李大燕2, 袁晨风2, 金国2, 房永超2, 张丹2
1 中国航发哈尔滨东安发动机有限公司,哈尔滨150066
2 哈尔滨工程大学材料科学与化学工程学院,超轻材料与表面技术教育部重点实验室,哈尔滨 150001
Metal Ni Modification of Graphene and Its Effect on Mechanical Properties of Plasma Sprayed NiCoCrAlY Coating
ZHANG Yuhui1, LI Dayan2, YUAN Chenfeng2, JIN Guo2, FANG Yongchao2, ZHANG Dan2
1 AECC Harbin Dongan Engine Co., Ltd, Harbin 150066, China
2 Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
下载:  全 文 ( PDF ) ( 5661KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了解决石墨烯(GNPs)易团聚、高温易烧损等问题,本研究将利用化学镀工艺对石墨烯进行表面金属Ni修饰(Ni@GNPs),并通过等离子喷涂技术在K465高温合金表面制备NiCoCrAlY、NiCoCrAlY + GNPs和NiCoCrAlY + Ni@GNPs三种涂层,重点探究超声辅助、化学镀反应温度以及反应时间等因素对石墨烯表面修饰的影响,研究了Ni@GNPs外来添加相对等离子喷涂NiCoCrAlY涂层组织结构与力学性能的影响。结果表明,经过化学镀处理,石墨烯表面沉积了均匀分布的金属Ni镀层,在50 ℃下辅助超声反应40 min可进一步提高石墨烯表面的修饰效果;与NiCoCrAlY和NiCoCrAlY + GNPs涂层相比,添加Ni@GNPs能够显著减少涂层的孔洞与裂纹数量、提高涂层的致密性、大幅降低涂层的孔隙率;与NiCoCrAlY相比,NiCoCrAlY + Ni@GNPs涂层的硬度提升了30.9%,冲蚀率下降了7.4%,说明添加相Ni@GNPs能提高NiCoCrAlY涂层的力学性能与抗冲蚀性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张宇慧
李大燕
袁晨风
金国
房永超
张丹
关键词:  等离子喷涂  石墨烯  化学镀  NiCoCrAlY涂层    
Abstract: In order to solve the problems of easy agglomerate and oxidation at high temperature of graphene (GNPs), in this work, the electroless pla-ting process was employed to modify graphene with metal Ni (Ni@GNPs) and then the plasma spraying technology was used to prepare NiCoCrAlY, NiCoCrAlY + GNPs and NiCoCrAlY + Ni@GNPs coatings on the surface of K465 superalloy. The effects of process factors such as ultrasound-assisted, reaction temperature and reaction time of electroless plating on the graphene modified quality was mainly investigated. The influence of adding Ni@GNPs on the microstructure and mechanical properties of plasma sprayed NiCoCrAlY coatings was further studied. The results showed that after electroless plating, metal Ni coatings were uniformly deposited on the GNPs surface. When the electroless plating reaction was carried out under the condition of assisting ultrasonic reaction at 50 ℃ for 40 min, the modification effect of GNPs was improved. Compared with NiCoCrAlY and NiCoCrAlY + GNPs coatings, adding Ni@GNPs could significantly decrease the pores and cracks of coatings, and enhance the density of coatings, as well as substantially reduce the porosity. Furthermore, the hardness of NiCoCrAlY + Ni@GNPs coatings was increased by 30.9% and the erosion rate was reduced by 7.4% than that of NiCoCrAlY coatings, indicating that the addition of Ni@GNPs could also improve the mechanical property and erosion resistance of NiCoCrAlY coatings.
Key words:  plasma spraying    graphene    electroless plating    NiCoCrAlY coating
               出版日期:  2021-05-25      发布日期:  2021-06-04
ZTFLH:  TG174.4  
基金资助: 国家自然科学基金(51975137)
通讯作者:  jinjg721@163.com   
作者简介:  张宇慧,2005年毕业于哈尔滨工程大学材料与工程专业,获得工程硕士学位。同年入职中国航发哈尔滨东安发动机有限公司工作至今,高级工程师。
金国,博士,哈尔滨工程大学教授,博士研究生导师,主要研究方向为金属材料表面防护和处理技术、陶瓷涂层、增材制造。
引用本文:    
张宇慧, 李大燕, 袁晨风, 金国, 房永超, 张丹. 金属Ni修饰的石墨烯及其对等离子喷涂NiCoCrAlY涂层力学性能的影响[J]. 材料导报, 2021, 35(10): 10141-10146.
ZHANG Yuhui, LI Dayan, YUAN Chenfeng, JIN Guo, FANG Yongchao, ZHANG Dan. Metal Ni Modification of Graphene and Its Effect on Mechanical Properties of Plasma Sprayed NiCoCrAlY Coating. Materials Reports, 2021, 35(10): 10141-10146.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050020  或          http://www.mater-rep.com/CN/Y2021/V35/I10/10141
1 Juan C, Pereira Falcón, Alberto Echeverría, et al. Journal of Materials Research and Technology, 2019, 8(2),1761.
2 Du W, Shi Q, Dai M J, et al. Materials Reports A:Review Papers, 2018, 32(7),2267 (in Chinese).
杜伟, 石倩, 代明江, 等.材料导报 :综述篇, 2018, 32(7),2267.
3 Mao J, Deng C M, Wu X B, et al.Materials Reports A:Research Papers, 2017, 31(8),51 (in Chinese).
毛杰, 邓春明, 吴相彬, 等.材料导报:研究篇, 2017, 31(8),51.
4 Zhou Y Y, Ma G Z, Wang H D, et al.Materials Reports A:Review Papers, 2016, 30(9), 90 (in Chinese).
周羊羊,马国政,王海斗, 等.材料导报:综述篇, 2016, 30(9),90.
5 Lin J, Yang H,Yee J K, et al. Acta Materialia, 2016, 103, 128.
6 Liu Y, Liu S Y, Wang Y, et al. Materials Reports, 2016, 30(S1),67 (in Chinese).
刘勇,刘赛月,王铀, 等.材料导报, 2016, 30(专辑27), 67.
7 Ghodrati H, Ghomashchi R.FlatChem, 2019, 16, 100113.
8 Geim A K, Novoselov K S.Nature Materials, 2007, 6(3), 183.
9 Mokhalingam A, Dinesh Kumar, Ashish Srivastava. Materials Today: Proceedings, 2017, 4(2),3952.
10 Liu G, Zhao N Q, Shi C S, et al.Materials Science and Engineering: A, 2017, 699,185.
11 Xiaolong Lu, Sadhana Bhusal, Guangyu He, et al.Surface and Coatings Technology, 2019, 366, 54.
12 Wu Y H, Zhan K, Yang Z, et al.Journal of Alloys and Compounds, 2019, 775, 233.
13 Biswajyoti Mukherjee, Rishow Kumar, Aminul Islam, et al.Journal of Alloys and Compounds, 2018, 765,1082.
14 Prashantha Kumar H G, Xavior M A.Procedia Engineering, 2014, 97,1033.
15 Hanieh Ghodrati, Reza Ghomashchi. FlatChem, 2019, 16,100113.
16 He Q B, Li Z S, Wu H L, et al.Journal of Ordnance Equipment Enginee-ring, 2016, 37(11), 128 (in Chinese).
何庆兵, 李忠盛, 吴护林, 等.兵器装备工程学报, 2016, 37(11), 128.
17 Pan X H, Niu Y R, Liu T, et al.Journal of the European Ceramic Society, 2019, 39(13), 3604.
18 Li Z. Research on erosion wear mechanisms of NiCr-Cr3C2/NiCrAl coa-ting for impeller remanufacturing. Master's Thesis, Shandong University, China, 2019 (in Chinese).
李振. 叶轮再制造修复用NiCr-Cr3C2/NiCrAl涂层冲蚀磨损机理研究. 硕士学位论文, 山东大学, 2019.
19 Wei X, Sui Y, Dai Y. Electroplating & Pollution Control, 2018, 38(6),54 (in Chinese).
魏欣, 孙玥, 戴懿. 电镀与环保, 2018, 38(6), 54.
20 Jia Q H. Plating and Finishing, 2020, 42(3),24(in Chinese).
贾启华.电镀与精饰, 2020, 42(3),24.
21 Wei C, Ren T. 2017, 46(3),91 (in Chinese).
魏超, 任婷. 表面技术, 2017, 46(3),91.
22 Ferrari A C, Meyer J C, Scardaci V, et al.Physical Review Letters, 2006, 97(18),187401.
23 Zhang Y, Gomez L, Ishikawa F N, et al.Journal of Physical Chemistry Letters, 2010, 1(20), 3101.
24 Jin Y, Sun P, Liu Q L, et al.Transactions of Materials and Heat Treatment, 2012, 33(3),146 (in Chinese).
晋勇, 孙平, 刘巧玲, 等.材料热处理学报, 2012, 33(3), 146.
25 Zhu C H. Mechanical properties of graphene nanosheets toughened composite coatings fabricated by plasma spray. Master's Thesis, Soochow University, China, 2017 (in Chinese).
朱朝晖. 等离子喷涂石墨烯增韧氧化铝复合涂层力学性能研究, 硕士学位论文, 苏州大学, 2017.
26 Ren J, Zhao D, Qi F, et al.Journal of the Mechanical Behavior of Biomedical Materials, 2020, 101,103418.
27 Deng P S, Yao C W, Feng K, et al.Surface and Coatings Technology, 2018, 335,334.
28 Mu X N, Cai H N, Zhang H M, et al.Carbon, 2018, 137,46.
29 Zou H, Wang Z P. Hot Working Technology, 2009, 38(16), 82.
邹慧, 王志平. 热加工工艺, 2009, 38(16), 82.
30 Yan T, Liu G M, Wu H,China Surface Engineering, 2017(1), 113 (in Chinese).
闫涛, 刘贵民, 吴行, 等. 中国表面工程, 2017(1),113.
31 Gao L, Wei L, Guo H,et al. Ceramics International, 2016, 42(4), 5530.
[1] 刘家森, 陈秀华, 李绍元, 马文会, 李毅, 胡焕然, 马壮. 石墨烯/硅肖特基结太阳能电池的研究进展[J]. 材料导报, 2021, 35(9): 9115-9122.
[2] 孙晓玲, 弓巧娟, 梁云霞, 巩鹏妮. 新型薄层氮化碳/氧化石墨烯复合材料的制备及在锌-空气电池中的应用[J]. 材料导报, 2021, 35(8): 8001-8006.
[3] 陈瑞芳, 曲雯雯, 王一钧, 马保挎, 陈尚民. 溶剂对钨酸铋/石墨烯形貌结构和光催化性能的影响[J]. 材料导报, 2021, 35(6): 6008-6014.
[4] 索鑫磊, 刘艳, 张立来, 苏杭, 李婉, 李国龙. 基于氧化石墨烯空穴传输层的平面异质结钙钛矿太阳能电池[J]. 材料导报, 2021, 35(6): 6015-6019.
[5] 吴礼宁, 夏延秋, 吴浩, 陈中山, 曹亚楠, 侯冲. 纳米碳管/石墨烯导电硅脂的性能[J]. 材料导报, 2021, 35(6): 6189-6193.
[6] 张铃, 杨钦如, 余梦, 黄锐明, 程其进. CuSCN作为石墨烯/硅异质结太阳能电池无机界面层的数值模拟[J]. 材料导报, 2021, 35(4): 4001-4006.
[7] 朱云娜, 高利霞, 熊彤彤, 杜婵, 张士民, 陈必清. 化学镀工艺制备高耐腐蚀性能的Ni-Co-B-Pr复合镀层[J]. 材料导报, 2021, 35(4): 4159-4164.
[8] 张智, 马幼平, 周子凌, 魏花丽, 赵丽娜. 空心球羟基磷灰石等离子喷涂粉体的制备[J]. 材料导报, 2021, 35(2): 2019-2025.
[9] 魏致强, 王远贵, 齐孟, 郑旭煦, 袁小亚. 没食子酸协同聚羧酸减水剂分散氧化石墨烯及其对水泥砂浆性能的影响[J]. 材料导报, 2021, 35(10): 10042-10047.
[10] 林绍铃, 黄初, 赵小敏, 陈国华. 石墨烯/黑磷纳米复合粒子对环氧树脂阻燃与热稳定性能的影响[J]. 材料导报, 2021, 35(10): 10184-10188.
[11] 曹明艳, 俞爱斌, 吴玉萍, 乔磊, 程杰. 氧化石墨烯/聚酯树脂涂层的制备及耐腐蚀性能[J]. 材料导报, 2021, 35(10): 10227-10231.
[12] 吴学志, 尹邦跃. 原位合成法制备UO2-石墨烯复合燃料机理与性能研究[J]. 材料导报, 2020, 34(Z2): 6-10.
[13] 侯若梦, 贾瑛, 黄远征, 沈可可. 石墨烯复合材料在空气净化中的应用研究进展[J]. 材料导报, 2020, 34(Z2): 104-111.
[14] 赵可一, 曾和平. 镀铜空心玻璃微珠的光催化降解性能[J]. 材料导报, 2020, 34(Z2): 132-137.
[15] 于镇洋, 吕本元, 何威. 冷轧对原位生长三维石墨烯/铜基复合材料性能的影响[J]. 材料导报, 2020, 34(Z2): 390-394.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed