Please wait a minute...
材料导报  2021, Vol. 35 Issue (4): 4159-4164    https://doi.org/10.11896/cldb.19090092
  金属与金属基复合材料 |
化学镀工艺制备高耐腐蚀性能的Ni-Co-B-Pr复合镀层
朱云娜, 高利霞, 熊彤彤, 杜婵, 张士民, 陈必清
青海师范大学化学化工学院,西宁 810000
Preparation of Ni-Co-B-Pr Composite Coating with High Performance of Corrosion Resistance by Electroless Plating Method
ZHU Yunna, GAO Lixia, XIONG Tongtong, DU Chan, ZHANG Shimin, CHEN Biqing
College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810000, China
下载:  全 文 ( PDF ) ( 5714KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 采用化学镀工艺在不同浓度稀土、不同Ni2+/Co2+比例下,在1 cm×1 cm×1 mm的99.99%黄铜基体上制备Ni-Co-B-Pr四元复合镀层,并对耐腐蚀性最好的镀层在不同温度下进行退火处理。利用EDX、XRD、SEM等测试方法对镀层的表面形貌、晶型结构和耐蚀性能等进行表征分析。通过Tafel曲线、浸泡法和测试孔隙率,研究了Ni-Co-B-Pr四元复合镀层的腐蚀行为。结果表明:Ni-Co-B-Pr镀层为非晶结构。随着镍钴比例和稀土含量的增加,颗粒细化,镀层裂痕减少,但达到一定程度后,镀层质量下降。在3.5%(质量分数)NaCl溶液中测得Tafel曲线,镍钴比例为3/2,Pr3+浓度为3 g/L时,镀层的耐腐蚀性能最好,Ecorr为-0.436 V,Icorr为0.586 A·cm-2。通过浸泡法和孔隙率法进一步证明了此结果。镀层经退火后颗粒变大,由非晶态转变为晶态,经200 ℃退火后,镀层的耐腐蚀性增强,随着温度的升高,镀层耐腐蚀性降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱云娜
高利霞
熊彤彤
杜婵
张士民
陈必清
关键词:  化学镀  Ni-Co-B-Pr镀层  Tafel曲线  耐腐蚀性  退火    
Abstract: Utilizing 99.99% Cu substrate (1 cm×1 cm×1 mm) as substrate, a series of Ni-Co-B-Pr coating has been synthesized by electroless pla-ting method under varying the ratio of Ni2+/Co2+ and concentrations of Pr3+, and the best corrosion resistance coating was annealed at different temperatures. Use EDX, XRD, SEM and other test methods to characterize and analyze the surface morphology, crystal structure and corrosion resistance of the coating. Tafel curve, immersion method and porosity test were used for corrosion behavior of Ni-Co-B-Pr composite coating. The results show that the Ni-Co-B-Pr coating has an amorphous structure. With the increase of the Ni/Co salts ratio and the Pr3+ concentration, the particles are refined and the cracks of the coating are reduced, but after reaching a certain level, the quality of the coating is reduced. In Tafel curve test (3.5%NaCl solution), the best corrosion resistance was obtained for coating prepared at Ni/Co salts ratio of about 3/2 and Pr3+ concentration of about 3 g/L, in which Eccor is -0.436 V and Icorr is 0.586 A·cm-2. This result is further proved by the immersion method and porosity test. After annealing, the particles of the coating become larger, and the coating changes from amorphous to crystalline. The annealing temperature was 200 ℃, the coating had a best corrosion resistance performance. As the temperature continues to rise, the corrosion resistance of the coating decreases.
Key words:  electroless plating    Ni-Co-B-Pr coating    Tafel curves    corrosion resistance    annealing
               出版日期:  2021-02-25      发布日期:  2021-02-23
ZTFLH:  O646  
基金资助: 国家自然科学基金重点项目(21553002);青海基础研究计划(2016-ZJ-753)
通讯作者:  chenbq2332@163.com   
作者简介:  朱云娜,青海师范大学硕士研究生,物理化学专业,硕士期间研究方向为:电化学纳米催化材料。
陈必清,男,1963年生,教授,研究工作主要包括电化学及无极材料制备。已在国内外学术期刊发表文章近20多篇。
引用本文:    
朱云娜, 高利霞, 熊彤彤, 杜婵, 张士民, 陈必清. 化学镀工艺制备高耐腐蚀性能的Ni-Co-B-Pr复合镀层[J]. 材料导报, 2021, 35(4): 4159-4164.
ZHU Yunna, GAO Lixia, XIONG Tongtong, DU Chan, ZHANG Shimin, CHEN Biqing. Preparation of Ni-Co-B-Pr Composite Coating with High Performance of Corrosion Resistance by Electroless Plating Method. Materials Reports, 2021, 35(4): 4159-4164.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090092  或          http://www.mater-rep.com/CN/Y2021/V35/I4/4159
1 Ohno I. Materials Science and Engineering: A, 1991, 146 (1-2), 33.
2 Krishnan K H, John S, Srinivasan K, et al.Metallurgical and Materials Transactions A, 2006, 37 (6), 1917.
3 Krishnaveni K, Narayanan T S, Seshadri S.Surface and Coatings Techno-logy, 2005, 190 (1), 115.
4 Hu C, Xu M, Zhang J, et al.Journal of Alloys and Compounds, 2019, 770, 48.
5 Shi Z Y, Wang D Q, Ding Z M.Applied Surface Science, 2004, 221 (1-4), 62.
6 Bekish Y N, Poznyak S, Tsybulskaya L, et al. Electrochimica Acta,2010, 55 (7), 2223.
7 Wang W Y, Yang Y Q, Bao J G, et al. Catalysis Communications, 2009, 11 (2), 100.
8 Nie M, Zou Y, Huang Y, et al.International Journal of Hydrogen Energy,2012, 37 (2), 1568.
9 Santana R, Prasad S, Campos A, et al.Journal of Applied Electrochemistry, 2006, 36 (1), 105.
10 Abdel-Gawad S A, Sadik M A, Shoeib M A.Journal of Alloys and Compounds, 2019, 785, 1284.
11 Qian W, Wei H, Chen H, et al.Surface Engineering, 2019, 35 (2), 144.
12 Campillo B, Sebastian P, Gamboa S, et al.Materials Science and Engineering: C, 2002, 19 (1-2), 115.
13 Wang S.Thin Solid Films,2007, 515 (23), 8419.
14 Gamboa S, Gonzalez-Rodriguez J, Valenzuela E, et al.Electrochi-mica Acta,2006, 51(19), 4045.
15 Bekish Y N, Poznyak S, Tsybulskaya L, et al.Journal of the Electroche-mical Society, 2014, 161 (12), D620.
16 Xuan T P, Zhuang L C, Feng S Z.Journal of Rare Earths, 2006, 24 (1S1), 393.
17 Qian W E I, Chen H, Feng C,et al. Surface Review and Letters,2018, 25 (6), 1950006.
18 Jamali S S, Moulton S E, Tallman D E, et al.Journal of Electroanalytical Chemistry, 2015, 739, 211.
19 Delaunois F, Lienard P.Surface and Coa-tings Technology, 2002, 160 (2-3), 239.
20 Dervos C T, Novakovic J, Vassiliou P.Materials Letters, 2004, 58 (5), 619.
21 Ashassi-Sorkhabi H, Moradi-Haghighi M, Hosseini M.Surface and Coa-tings Technology, 2008, 202 (9), 1615.
22 Li H, Ebrahimi F.Acta Materialia,2003, 51 (13), 3905.
23 Wang K L, Zhu Y M, Zhang Q B, et al.Journal of Materials Processing Technology, 1997, 63 (1-3), 563.
24 Zhang L M, Zhang S D, Ma A L, et al.Corrosion Science, 2018, 144, 172.
25 Liu H, Guo R X, Zong Y, et al.Transactions of Nonferrous Metals Society of China,2010, 20 (6), 1024.
26 Zhang S, Zheng Y,Yuan L,et al.Acta Chimica Sinica, 2013, 71 (12), 1676(in Chinese).
张树金, 郑一雄, 袁林珊, 等. 化学学报,2013, 71 (12), 1676.
27 Khalajhedayati A, Pan Z, Rupert T. Nature Communications, 2016, 7, 10802.
28 Jiang W, Shen L, Xu M, et al. Journal of Alloys and Compounds, 2019, 791, 847.
29 Sun F, Meng G, Zhang T, et al. Electrochimica Acta, 2009, 54(5), 1578.
30 Yasakau K A, Zheludkevich M L, Lamaka S V, et al.The Journal of Physical Chemistry B, 2006, 110 (11), 5515.
31 Walsh F, de León C P, Kerr C,et al. Surface and Coatings Technology, 2008, 202(21), 5092.
32 Gao Y, Zheng Z, Zhu M, et al. Materials Science and Engineering: A, 2004, 381 (1-2), 98.
[1] 叶俊杰, 贺志荣, 张坤刚, 冯辉. 退火温度对Ti-50.8Ni-0.1Zr形状记忆合金丝记忆行为和力学性能的影响[J]. 材料导报, 2021, 35(4): 4118-4123.
[2] 翟建树, 李春燕, 田霖, 卢煜, 寇生中. Fe基非晶涂层耐腐蚀性能的影响因素及提升措施综述[J]. 材料导报, 2021, 35(3): 3129-3140.
[3] 赵可一, 曾和平. 镀铜空心玻璃微珠的光催化降解性能[J]. 材料导报, 2020, 34(Z2): 132-137.
[4] 梁广, 朱胜, 王文宇, 王晓明, 韩国峰, 任智强. 铝合金腐蚀防护技术研究现状及发展趋势[J]. 材料导报, 2020, 34(Z2): 429-436.
[5] 栾吉瑜, 王保杰, 许道奎, 孙杰. 镁锂合金表面腐蚀防护研究进展[J]. 材料导报, 2020, 34(Z2): 441-446.
[6] 卢建红, 邓小梅, 阎建辉, 涂继国, 王明涌, 焦树强. 2,2′-联吡啶对化学铜二元络合剂体系沉积过程的影响[J]. 材料导报, 2020, 34(Z2): 539-542.
[7] 郭德双, 王登魁, 王新伟, 孟兵恒, 方铉, 房丹, 魏志鹏. 氢气退火对ITO纳米颗粒能带结构的影响[J]. 材料导报, 2020, 34(Z1): 26-28.
[8] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[9] 黄同瑊, 秦宇, 晁代义, 王志雄, 宋晓霖, 张华, 程仁策. 大尺寸Al-Cu-Mg-Mn合金铸锭均匀化工艺研究[J]. 材料导报, 2020, 34(Z1): 325-327.
[10] 唐伍实秋, 王斌, 江明晏, 周椤, 叶洋呈. 锆合金表面氟化物-磷酸盐预镀层的制备及对化学镀层性能的影响[J]. 材料导报, 2020, 34(Z1): 390-394.
[11] 梁惠东, 郑汉杰, 杨浩, 王晨, 陈俊锋, 汪炳叔. 氮添加量对块体纳米晶NdFeB永磁材料的影响[J]. 材料导报, 2020, 34(8): 8025-8030.
[12] 马潇磊, 张成成, 张朝磊, 马晓艺, 赵海东, 方文. 基于“混杂”设计的索氏体新型不锈钢的组织和性能[J]. 材料导报, 2020, 34(4): 4103-4107.
[13] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[14] 李红,邢增程,Erika Hodúlová,胡安明,Wolfgang Tillmann. 退火处理工艺在纳米多层膜材料研究中的应用进展[J]. 材料导报, 2020, 34(3): 3099-3105.
[15] 张国忠,李艳辉,吴立成,张伟. Fe基纳米晶软磁合金退火脆性的研究进展[J]. 材料导报, 2020, 34(3): 3165-3171.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed