Please wait a minute...
材料导报  2020, Vol. 34 Issue (4): 4103-4107    https://doi.org/10.11896/cldb.18120004
  金属与金属基复合材料 |
基于“混杂”设计的索氏体新型不锈钢的组织和性能
马潇磊1, 张成成1, 张朝磊1, 马晓艺2, 赵海东3, 方文1
1 北京科技大学材料科学与工程学院,北京 100083;
2 青海大学机械工程学院,西宁 810016;
3 西宁特殊钢股份有限公司,青海省特殊钢工程技术研究中心,西宁 810005
Microstructure and Properties of Sorbite Stainless Steel Designed by “Hybrid” Idea
MA Xiaolei1, ZHANG Chengcheng1, ZHANG Chaolei1, MA Xiaoyi2, ZHAO Haidong3, FANG Wen1
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2 School of Mechanical Engineering, Qinghai University, Xining 810016, China;
3 Qinghai Special Steel Engineering Technology Research Center, Xining Special Steel Co. Ltd, Xining 810005, China
下载:  全 文 ( PDF ) ( 6898KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 对基于“混杂”设计的索氏体高强新型不锈钢进行了显微组织分析及力学性能和耐腐蚀性能评价;进一步将其与其他典型钢种对比,并探讨其应用前景。结果表明:索氏体不锈钢显微组织类型上与马氏体不锈钢相似;具有较好的强韧性匹配,并且调控范围广;成形性和冲击性能良好;耐蚀性与201奥氏体不锈钢相当或比201奥氏体不锈钢略差,但比410马氏体不锈钢略好;索氏体不锈钢在耐蚀工程结构等领域具有广阔的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马潇磊
张成成
张朝磊
马晓艺
赵海东
方文
关键词:  混杂钢  不锈钢  索氏体  耐腐蚀性    
Abstract: Microstructures, mechanical properties and corrosion resistance of a new high-strength sorbite stainless steel were analyzed and evaluated, which was designed based on the concept of “hybrid”. Furthermore, the sorbite stainless steel was compared with other typical steels and its application prospects were discussed. Results showed that the microstructure of sorbite stainless steel was similar to that of the martensitic stainless steel. The strength and toughness of the sorbite stainless steel matched well and could be regulated in a wide range. The formability and impact properties were favorable as well. The corrosion resistance of the sorbite stainless steel was comparable to or slightly worse than 201 austenitic stainless steel, while it was slightly better than 410 martensitic stainless steel. Therefore, the application prospects of the sorbite stainless steel is board in the field of corrosion-resist structural engineering.
Key words:  hybrid steel    stainless steel    sorbite    corrosion resistance
               出版日期:  2020-02-25      发布日期:  2020-01-15
ZTFLH:  TG142.1  
基金资助: 青海省科技计划项目(2017-ZJ-751)
通讯作者:  zhangchaolei@ustb.edu.cn   
作者简介:  马潇磊,男,1994年生,北京科技大学材料科学与工程专业硕士研究生。在张朝磊副教授指导下进行汽车用高品质特殊钢组织性能控制研究;张朝磊,北京科技大学材料科学与工程学院副教授。2013年1月毕业于北京科技大学材料加工工程专业,获工学博士学位。毕业后留校工作至今,主要从事材料组织性能控制,先进钢铁材料成分组织设计、质量控制与应用技术等研究工作。在国内外期刊以第一作者身份发表论文30余篇,授权发明专利10余项。
引用本文:    
马潇磊, 张成成, 张朝磊, 马晓艺, 赵海东, 方文. 基于“混杂”设计的索氏体新型不锈钢的组织和性能[J]. 材料导报, 2020, 34(4): 4103-4107.
MA Xiaolei, ZHANG Chengcheng, ZHANG Chaolei, MA Xiaoyi, ZHAO Haidong, FANG Wen. Microstructure and Properties of Sorbite Stainless Steel Designed by “Hybrid” Idea. Materials Reports, 2020, 34(4): 4103-4107.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120004  或          http://www.mater-rep.com/CN/Y2020/V34/I4/4103
1 Gholinia A, Humphreys F J, Prangnell P B. Materials Science and Technology, 2000, 16(11-12), 1251.
2 Zhao H Y, Wang G D, Liu X H, et al. Automobile Technology & Mate-rial, 2003 (10), 4(in Chinese).
赵洪运, 王国栋, 刘相华, 等. 汽车工艺与材料, 2003 (10), 4.
3 http://surface.mechanical-tech.jp/node/2448, 2017-02-10.
4 Dong H, Wang M Q, Weng Y Q. Iron & Steel, 2010, 45(7), 1(in Chinese).
董瀚, 王毛球, 翁宇庆. 钢铁, 2010, 45(7), 1.
5 Jiang S, Wang H, Wu Y, et al. Nature, 2017, 544(7651), 460.
6 He B B, Hu B, Yen H W, et al. Science, 2017, 357(6355), 1029.
7 Wang Q. Domestic independent research and development of Sorbite high-strength stainless structural steel, China Metallurgical News, 2017-12-19 (001)(in Chinese).
王庆. 国内自主研发索氏体高强不锈结构钢, 中国冶金报, 2017-12-19 (001).
8 http://www.ovako.com/ Products/Hybrid-Steel/.
9 Standard promotes the development and application of high-strength stainless steel structural steel, World Metals, 2017-12-12 (F01)(in Chinese).
标准促进索氏体高强不锈结构钢研发应用, 世界金属导报, 2017-12-12 (F01).
10 Jia F X. Stainless steel processing technology, Chemical Industry Press, China, 2013(in Chinese).
贾凤翔. 不锈钢加工技术, 化学工业出版社, 2013.
11 Jin S Q, Zhao Z D.Physics Examination and Testing, 1992 (1), 40(in Chinese).
金淑荃, 赵宗鼎. 物理测试, 1992(1), 40.
[1] 王永金, 张应超, 宋仁伯. 梯度结构半固态9Cr18不锈钢的制备与显微组织演变[J]. 材料导报, 2021, 35(2): 2120-2124.
[2] 梁广, 朱胜, 王文宇, 王晓明, 韩国峰, 任智强. 铝合金腐蚀防护技术研究现状及发展趋势[J]. 材料导报, 2020, 34(Z2): 429-436.
[3] 刘自刚, 唐海鸿, 刘云华, 陈亮, 陈勇, 陈飞. 不锈钢DP-TIG焊接接头组织与性能[J]. 材料导报, 2020, 34(Z2): 462-464.
[4] 张朝磊, 胡佳丽, 李戬, 苗红生, 刘雅政. 胀断连杆用非调质钢C70S6的材料特性及组织性能控制[J]. 材料导报, 2020, 34(Z1): 444-447.
[5] 梁惠东, 郑汉杰, 杨浩, 王晨, 陈俊锋, 汪炳叔. 氮添加量对块体纳米晶NdFeB永磁材料的影响[J]. 材料导报, 2020, 34(8): 8025-8030.
[6] 李平, 赵焰杰, 王李波. 基于交互正交试验的304不锈钢冲蚀磨损性能的影响因素研究[J]. 材料导报, 2020, 34(8): 8149-8153.
[7] 李绘, 张燕, 张玉琰, 宋风娟, 郦雪, 王浩宇, 曹晓强, 吕宪俊. [BMIM][BF4]-MnO2@SS阳极的制备及对氧氟沙星废水的降解[J]. 材料导报, 2020, 34(6): 6029-6032.
[8] 陈钢, 鞠娜, 雷玉成, 王丹, 朱强, 李天庆, 陈璐. 430不锈钢在550℃流动Pb-Bi合金中的腐蚀行为[J]. 材料导报, 2020, 34(6): 6105-6108.
[9] 吴文博, 张志明, 王俭秋, 韩恩厚, 柯伟. 热老化316L不锈钢在模拟核电溶解氧/氢高温高压水中应力腐蚀裂纹扩展行为[J]. 材料导报, 2020, 34(6): 6144-6150.
[10] 李福贵, 雷玉成, 李天庆, 朱强, 张雪宁. 奥氏体不锈钢焊接接头辐照偏析和辐照硬化的研究[J]. 材料导报, 2020, 34(4): 4098-4102.
[11] 瞿猛, 唐建国, 叶凌英, 李承波, 李建湘, 周旺, 邓运来. 过时效与添加Zr对Al-Zn-Mg合金耐腐蚀性能影响的对比[J]. 材料导报, 2020, 34(2): 2083-2087.
[12] 马旻昱, 连勇, 张津. 增材制造技术制备高熵合金的研究现状及展望[J]. 材料导报, 2020, 34(17): 17082-17088.
[13] 王铁军, 杨博, 梁晨, 车洪艳, 秦巍, 曹睿. 退火温度对热轧态M390组织与性能的影响[J]. 材料导报, 2020, 34(12): 12122-12126.
[14] 李萧, 胡水平, 韩天棋. Nd、Y对AZ31镁合金热轧退火薄板耐蚀性的影响[J]. 材料导报, 2020, 34(10): 10088-10092.
[15] 施佳鑫, 朱卫华, 朱红梅, 陈志勇, 刘晋京, 史新灵, 王新林. CaB6对激光熔覆生物陶瓷涂层组织和生物学性能的影响[J]. 材料导报, 2020, 34(10): 10030-10034.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed