Please wait a minute...
材料导报  2020, Vol. 34 Issue (6): 6144-6150    https://doi.org/10.11896/cldb.19030167
  金属与金属基复合材料 |
热老化316L不锈钢在模拟核电溶解氧/氢高温高压水中应力腐蚀裂纹扩展行为
吴文博1,2, 张志明1,3, 王俭秋1,3, 韩恩厚1,3, 柯伟1,3
1 中国科学院金属研究所,中国科学院核用材料与安全评价重点实验室,沈阳 110016;
2 中国科学技术大学材料科学与工程学院,沈阳 110016;
3 辽宁省核电材料安全与评价技术重点实验室,沈阳 110016
Stress Corrosion Cracking Behavior of Thermally Aged 316L SS in Simulated Oxygenated/Hydrogenated High Temperature and Pressure Water in Nuclear Power Plants
WU Wenbo1,2, ZHANG Zhiming1,3, WANG Jianqiu1,3, HAN Enhou1,3, KE Wei1,3
1 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China;
3 Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Shenyang 110016, China
下载:  全 文 ( PDF ) ( 5242KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用直流电位降(DCPD)和高温高压腐蚀测试系统,开展了热老化2000h的316L不锈钢(SS)样品在320℃、13MPa的模拟核电一回路含1.5×10-3B和2.3×10-6Li的高温高压水中的应力腐蚀裂纹扩展速率(CGR)测试。结果表明,当溶液中的溶解氧(DO)含量从2×10-6逐步降低至10-6、5×10-7、10-7以及5×10-9时,热老化316LSS的CGR逐渐降低,其中DO降低至5×10-7以及更低时,CGR降低明显。当溶液由DO转为溶解氢(DH)时,CGR进一步降低。利用扫描电子显微镜(SEM)以及电子背散射衍射(EBSD),对测试后样品的断口形貌以及裂纹扩展路径进行了观察,断口呈现典型的沿晶应力腐蚀开裂(IGSCC)形貌。DO/DH的改变主要影响了裂纹尖端的传质过程以及裂纹尖端新鲜表面的再钝化过程,进而影响CGR。热老化2000h对316LSS的微观结构以及在高温高压水中的应力腐蚀CGR影响较小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴文博
张志明
王俭秋
韩恩厚
柯伟
关键词:  溶解氧/溶解氢  热老化  不锈钢  高温高压水  应力腐蚀开裂  裂纹扩展速率    
Abstract: The crack growth rate (CGR) of stress corrosion cracking (SCC) of thermally aged 316L stainless steel (SS) for 2 000 h in simulated primary high temperature and high pressure water of 1.5×10-3 B and 2.3×10-6 Li at 320 ℃ and 13 MPa is tested using direct current potential drop (DCPD) system and high temperature and high pressure corrosion test system. Results show the CGR of thermally aged 316L SS is decreased gradually with the dissolved oxygen (DO) content in the solution decreasing from 2×10-6 to 10-6, 5×10-7, 10-7 and 5×10-9. When the DO content decreasing from 5×10-7 to the lower, the CGR of SCC is decreased significantly. The CGR is further decreased, when the solution is changed from DO to dissolved hydrogen (DH). Scanning electron microscopy (SEM) and electron back scattering diffraction (EBSD) are used to observe the fractures and crack propagation paths of the tested specimens. SCC fracture mainly presents a typical characteristic of intergranular stress corrosion cracking (IGSCC). The change of DO/DH mainly affects the mass transfer process of cracks tip and the repassivation process of the bare surface at cracks tip, which further affects the CGR. The thermal aging of 316L SS for 2 000 h has a small effect on its microstructure and CGR of SCC in high temperature and high pressure water.
Key words:  dissolved oxygen/hydrogen    thermal aging    stainless steel    high temperature and high pressure water    stress corrosion cracking    crack growth rate
                    发布日期:  2020-03-12
ZTFLH:  TG172.82  
基金资助: 国家重点研发计划(2017YFB0702100);国家自然科学基金(51771211);中国科学院前沿科学重点研究项目(QYZDY-SSW-JSC012);中国科学院重点部署项目(ZDRW-CN-2017-1)
作者简介:  吴文博,本科毕业于湘潭大学材料科学与工程学院,现为中国科学技术大学材料科学与工程学院硕士研究生,目前主要研究核电关键金属材料的应力腐蚀裂纹萌生与扩展行为;张志明,男,副研究员,硕士生导师;中国机械工程学会材料分会理事;主要从事核用关键金属材料的环境服役行为与安全评价研究,近五年发表论文30余篇,授权国内发明专利1项。获得了中国科学院科技促进发展奖1项,中国核能行业协会科技进步三等奖1项,中国核工业集团公司科技进步三等奖1项。主持了包括国家自然科学基金和国家重点研发计划子课题等在内的课题多项。
引用本文:    
吴文博, 张志明, 王俭秋, 韩恩厚, 柯伟. 热老化316L不锈钢在模拟核电溶解氧/氢高温高压水中应力腐蚀裂纹扩展行为[J]. 材料导报, 2020, 34(6): 6144-6150.
WU Wenbo, ZHANG Zhiming, WANG Jianqiu, HAN Enhou, KE Wei. Stress Corrosion Cracking Behavior of Thermally Aged 316L SS in Simulated Oxygenated/Hydrogenated High Temperature and Pressure Water in Nuclear Power Plants. Materials Reports, 2020, 34(6): 6144-6150.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030167  或          http://www.mater-rep.com/CN/Y2020/V34/I6/6144
1 Andresen P L. Corrosion, 2013, 69 (10),1024.
2 Andresen P L, Morra M M. Corrosion, 2008, 64 (1),15.
3 Qiu X P, Tan J. Nuclear Electronics & Detection Technology, 2005 (1),84 (in Chinese).
邱小平,谭健.核电子学与探测技术,2005 (1),84.
4 Spruiell J E, Scott J A, Ary C S, Metallurgical and Materials Transactions B, 1973, 4 (6),1533.
5 Li Y F. Study of stress corrosion cracking susceptibility of nickel-based welds in safe-end dissimilar metal weld in pressurized water reactor. Ph.D. Thesis, University of Science and Technology of China,China,2018 (in Chinese).
李毅丰.压水堆安全端异种金属焊接接头镍基焊缝材料应力腐蚀开裂敏感性研究.博士学位论文,中国科学技术大学,2018.
6 Stoter L P. Journal of Materials Science, 1981, 16 (4),1039.
7 Keown S R, Thomas R G. Metal Science, 1981, 15 (9),386.
8 O′Donnell I J, Huthmann H, Tavassoli A A. International Journal of Pressure Vessels & Piping, 1996, 65 (3),209.
9 Wang M, Chen L, Liu X, et al.Corrosion Science, 2014, 81 (4),117.
10 Li S L, Li S X, Wang Y L, et al. Acta Metallurgica Sinica, 2010,46 (10),1186 (in Chinese).
李时磊,李树肖,王艳丽,等.金属学报,2010,46 (10),1186.
11 Zhang Y. The investigation on thermal aging and stress corrosion cracking sensibility of the forged 316LN austenitic stainless steel. Master's Thesis, Yanshan University, China, 2012 (in Chinese).
张勇.锻造316LN材料热老化与应力腐蚀开裂敏感性研究.硕士学位论文,燕山大学, 2012.
12 Xu W J, Bai X D. The thermal aging and life prolonged of nuclear materials, Chemical Industry Press, China,2015 (in Chinese).
许维钧,白新德. 核电材料老化与延寿,化学工业出版社,2015.
13 Chung H M, Ruther W E, Sanecki J E, et al. Journal of Nuclear Mate-rials, 1996,239 (1-3),61.
14 Jenssen A, Ljungberg L G, Walmsley J, et al. Corrosion, 1998,54 (1),48.
15 Andresen P, Catlin W, Morra M. In: Proceedings of NACE Corrosion 2004. New Orleans, Louisiana,2004,pp.04678.
16 Li G F, Kaneshima Y, Shoji T. Corrosion, 2000,56 (5),460.
17 Lu Z, Shoji T, Takeda Y, et al. Corrosion, 2007,63 (11),1021.
18 Lu Z, Shoji T, Meng F, et al. Corrosion Science, 2011,53 (1),247.
19 Saito N, Kikuchi E, Sakamoto H, et al. Corrosion, 1997,53 (7),537.
20 Kikuchi E, Itow M, Kuniya J, et al. Corrosion, 1997,53 (4),306.
21 Zhang L T. Stress corrosion crack growth behavior of nuclear grade 316L stainless steel in pressurized temperature water. Ph.D. Thesis, University of Chinese Academy of Science, China, 2014 (in Chinese).
张利涛. 核级316L不锈钢在高温高压水环境中的应力腐蚀裂纹扩展行为研究.博士学位论文,中国科学院大学,2014.
22 Bai X D. Nuclear material chemistry, 1st edition, Chemical Industry Press, China, 2007 (in Chinese).
白新德. 核材料化学, 第一版, 化学工业出版社, 2007.
23 Mailand I, Venz H. In:An Approved Method To Reduce Dose Rate: International Conference on Water Chemistry of Nuclear Reactor Systems, Berlin, 2008.
24 Kuang W, Wu X, Han E. Corrosion Science, 2013,69,197.
25 Chung H M, Leax T R. Metal Science Journal, 1989, 6 (3),249.
26 Auger P, Danoix F, Menand A, et al. Metal Science Journal, 2013, 6 (3),301.
27 Chung H M. International Journal of Pressure Vessels & Piping, 1992, 50 (1-3),179.
28 Pumphrey P H, Akhurst K N. Materials Science and Technology,1990, 6, 211.
29 ASTM-E647-11, American Society of Testing Materials, America,2011.
30 中华人民共和国国家质量监督检疫总局,中国国家标准化管理委员会.《金属和合金的腐蚀双环电化学动电位再活化测量法》. GB/T29088,2012.
31 Davis J R. Metals handbook, 9th edition, China Machine Press, China, 2011 (in Chinese).
戴维斯.金属手册, 第九版,机械工业出版社,2011.
32 Peckener D,Bernstein I M. Handbook of stainless steels, McGraw-Hill Company,USA,1997.
33 Lewis A C, Bingert J F, Rowenhorst D J, et al. Materials Science and Engineering: A, 2006, 418 (1-2),11.
34 Wang C L. Phase diagrams and its application,Higher Education Press,China,2014 (in Chinese).
王崇琳. 相图理论及其应用, 高等教育出版社, 2014.
35 Dutt B S, Babu M N, Shanthi G, et al. Journal of Materials Engineering and Performance,2018,4,1957.
36 Seifert H P, Ritter S, Leber H J,et al.Corrosion Science, 2012, 59 (2),20.
37 Sadananda K,Vasudevan A K.International Journal of Fatigue,1999,16 (6),1.
38 Zhang L T, Wang J Q. Acta Metallurgica Sinica, 2013,49 (8),911 (in Chinese).
张利涛,王俭秋.金属学报,2013,49 (8),911.
39 Zhu R, Wang J, Zhang L, et al. Corrosion Science,2016,112,373.
40 Terachi T, Fujii K, Arioka K. Journal of Nuclear Science and Technology, 2005,42 (2),225.
41 Ford F P. Corrosion, 1996,52 (5),375.
42 Andresen P L.In:Critical Processes to Model in Predicting SCC Response in Hot Water. Corrosion, Houston,NACE,2005,pp.05470.
43 Cao C N, Principles of corrosion electrochemistry, Chemical Industry Press, China, 2004 (in Chinese).
曹楚南. 腐蚀电化学原理, 化学工业出版社,2004.
44 Jang H, Cho P, Jang C, et al. Transactions of the Korean Society of Mechanical Engineers A, 2014, 38 (1),11.
45 Andresen P.Corrosion,2008,64 (5),439.
46 Arioka K, Yamada T, Terachi T, et al. Corrosion, 2007, 63 (12),1114.
47 Du D, Kai C, Hui L, et al. Corrosion Science, 2016, 110,134.
48 Du D, Chen K, Yu L, et al. Journal of Nuclear Materials, 2015, 456,228.
[1] 李绘, 张燕, 张玉琰, 宋风娟, 郦雪, 王浩宇, 曹晓强, 吕宪俊. [BMIM][BF4]-MnO2@SS阳极的制备及对氧氟沙星废水的降解[J]. 材料导报, 2020, 34(6): 6029-6032.
[2] 陈钢, 鞠娜, 雷玉成, 王丹, 朱强, 李天庆, 陈璐. 430不锈钢在550℃流动Pb-Bi合金中的腐蚀行为[J]. 材料导报, 2020, 34(6): 6105-6108.
[3] 李福贵, 雷玉成, 李天庆, 朱强, 张雪宁. 奥氏体不锈钢焊接接头辐照偏析和辐照硬化的研究[J]. 材料导报, 2020, 34(4): 4098-4102.
[4] 马潇磊, 张成成, 张朝磊, 马晓艺, 赵海东, 方文. 基于“混杂”设计的索氏体新型不锈钢的组织和性能[J]. 材料导报, 2020, 34(4): 4103-4107.
[5] 王冰. 铁素体不锈钢表面的拉丝缺陷[J]. 材料导报, 2019, 33(Z2): 460-462.
[6] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[7] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[8] 崔海坡, 张伟东, 宋成利, 王成勇, 张涛, 张春晓, 程千莉. 微创血管夹不同齿型对血管力学性能的影响[J]. 材料导报, 2019, 33(z1): 432-435.
[9] 毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展[J]. 材料导报, 2019, 33(7): 1206-1214.
[10] 侯艳, 程从前, 赵杰, 冯雪, 李然, 闵小华. 拉应力对2205双相不锈钢临界点蚀温度和点蚀行为的影响[J]. 材料导报, 2019, 33(6): 1022-1026.
[11] 张建龙, 薛河, 崔英浩, 陈浩. 加工硬化对304不锈钢应力腐蚀裂纹裂尖力学性能的影响[J]. 材料导报, 2019, 33(24): 4147-4151.
[12] 鞠娜, 雷玉成, 陈钢, 朱强, 李天庆, 王丹. 410不锈钢在550 ℃流动的铅铋共晶合金中的腐蚀行为[J]. 材料导报, 2019, 33(20): 3489-3493.
[13] 陈永城, 罗子艺, 张宇鹏, 易耀勇, 李明军. 紫铜/304不锈钢激光焊接接头显微组织及力学性能[J]. 材料导报, 2019, 33(2): 325-329.
[14] 靳军, 孙俊生, 孙洪根, 卢庆亮, 许京伟, 杨云. 热作模具表面氮合金化堆焊金属的组织和性能[J]. 材料导报, 2019, 33(19): 3184-3188.
[15] 温冬辉, 吕阳, 李震, 王清, 唐睿, 董闯. 强碳化物形成元素与碳的配比关系和稳定化处理对310S奥氏体不锈钢析出相行为的影响[J]. 材料导报, 2019, 33(18): 3101-3106.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed