Please wait a minute...
材料导报  2019, Vol. 33 Issue (18): 3101-3106    https://doi.org/10.11896/cldb.18050058
  金属与金属基复合材料 |
强碳化物形成元素与碳的配比关系和稳定化处理对310S奥氏体不锈钢析出相行为的影响
温冬辉1, 吕阳1, 李震2, 王清1, 唐睿3, 董闯1
1 大连理工大学材料科学与工程学院,三束材料改性教育部重点实验室,大连 116024
2 大连理工大学机械工程学院,大连 116024
3 中国核动力研究设计院反应堆燃料及材料重点实验室,成都 610213
Effects of Ratios of Strong Carbide-forming Elements to C and Stabilization Treatment on Precipitation Behavior of 310S Austenitic Stainless Steel
WEN Donghui1, LYU Yang1, LI Zhen2, WANG Qing1, TANG Rui3, DONG Chuang1
1 Key laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024
2 School of Mechanical Engineering, Dalian University of Technology, Dalian 116024
3 Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610213
下载:  全 文 ( PDF ) ( 4659KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高Cr/Ni含量的奥氏体不锈钢由于具有优异的综合性能而有望被用作超临界水冷堆的燃料包壳材料,但是该类奥氏体不锈钢存在组织稳定性差的问题,即在873~1 123 K温度下长期时效后晶界上会析出大量的Cr23C6σ相,从而导致材料的脆化和晶间腐蚀。为了提高该类不锈钢的高温组织稳定性,本工作系统研究了强碳化物形成元素M(M=Nb、Ti、Ta和Zr)与C的配比关系以及稳定化处理工艺对310S高温下析出相行为的影响。设计合金采用铜模快冷技术吸铸成直径为6 mm的棒材,并对其进行1 473 K/0.5 h固溶处理、1 173 K/0.5 h稳定化处理(部分样品)、1 073 K/24 h时效处理。分别采用OM、SEM-EDS、EPMA 和TEM等手段对合金不同热处理状态的析出相进行表征。研究结果表明,M的加入均能促进MC粒子的析出,促进效果为Ta>Nb/Ti>Zr,且M与C的最佳比例关系为1/1(原子比);当M与C的原子比为2/1时会促进脆性相σ析出,而当M与C的原子比为1/1时,1 073 K/24 h时效后晶界上只有Cr23C6析出。稳定化处理能使MC优先析出,可减少时效过程中粗大Cr23C6的析出量。本工作为超临界水冷堆燃料包壳材料的开发提供了有效的基础数据支撑,并为下一步的工作指明了方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
温冬辉
吕阳
李震
王清
唐睿
董闯
关键词:  奥氏体不锈钢  310S  强碳化物形成元素  稳定化处理  相析出行为    
Abstract: High Cr/Ni 310S-type austenitic stainless steels (ASSs) exhibit good comprehensive properties of creep-, corrosion- and oxidation-resis-tances, as well as moderate neutron irradiation-resistance, which are potential as fuel-cladding candidate materials applied into the super-critical water reactors (SCWRs). However, one underlying issue for this kind of ASSs is their microstructural stability, i.e., a large amount of coarse Cr23C6 and σ are precipitated on grain boundaries (GBs) after a long-term aging at 873—1 123 K, as a result of the embrittlement and intergranular corrosion of materials. In order to improve their microstructural stability at high temperatures, the present work investigated systematically the effects of the ratios of strong carbide-forming elements M (M=Nb, Ti, Ta, and Zr) to C (in atomic percent at%), and the stabilization treatment on the precipitation behaviors of 310S ASS. The designed alloy rods were solid-solutioned at 1 473 K for 0.5 h plus water quenched, stabilized at 1 173 K for 0.5 h, and then aged at 1 073 K for 24 h. The microstructure and precipitated phases at different heat-treatment states were characterized with OM, SEM-EDS, EPMA and TEM, respectively. It was found that the addition of M favors to the precipitation of MC-type carbides effectively. A high ratio of M to C (2/1) can accelerate the formation of brittle σ phase, in contrast, only Cr23C6 precipitates exist on GBs after 1 073 K/24 h aging in alloys with M/C=1/1. In addition, the Cr23C6 could be inhibited effectively by stabilization heat-treatment. This work provides effective basic data support for the development of fuel cladding materials for SCWRs, and point the way for the further research.
Key words:  austenitic stainless steels    310S    strong carbide-forming element    stabilization treatment    precipitation behavior
               出版日期:  2019-09-25      发布日期:  2019-07-31
ZTFLH:  TG113  
基金资助: 国际科技合作计划(2015DFR60370);国家重点研究发展计划(2017YFB0702400);国际热核聚变实验堆计划(2015GB121004)
通讯作者:  wangq@dlut.edu.cn   
作者简介:  温冬辉,2014年7月毕业于大连交通大学,获得工学学士学位,同年考入大连理工大学材料科学与工程学院硕博连读,主要从事核燃料包壳材料用不锈钢的成分优化与组织稳定性研究。
王清,大连理工大学教授,博士生导师。2005年11月毕业于大连理工大学,获得博士学位,同年加入大连理工大学材料学院工作。主要从事多元复杂工程合金材料设计与研发,包括特种不锈钢、高性能钛锆合金、高熵合金及高温合金等领域。在国内外重要期刊发表学术论文80余篇,申请专利20余项。
引用本文:    
温冬辉, 吕阳, 李震, 王清, 唐睿, 董闯. 强碳化物形成元素与碳的配比关系和稳定化处理对310S奥氏体不锈钢析出相行为的影响[J]. 材料导报, 2019, 33(18): 3101-3106.
WEN Donghui, LYU Yang, LI Zhen, WANG Qing, TANG Rui, DONG Chuang. Effects of Ratios of Strong Carbide-forming Elements to C and Stabilization Treatment on Precipitation Behavior of 310S Austenitic Stainless Steel. Materials Reports, 2019, 33(18): 3101-3106.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18050058  或          http://www.mater-rep.com/CN/Y2019/V33/I18/3101
[1] Locatelli G, Mancini M, Todeschini N. Energy Policy, 2013, 66, 1503.
[2] Schulenberg T, Leung L K, Oka Y. Progress Nuclear Energy, 2014, 77, 282.
[3] Baindur S. Bulletin Canada Nuclear Society, 2008, 29, 32.
[4] Azevedo C R F. Engineering Failure Analysis, 2011, 18, 1943.
[5] Zhang L F, Bao Y C, Tang R. Nuclear Engineering Design, 2012, 249, 180.
[6] Sun C, Hui R, Qu W, et al. Corrosion Science, 2009, 51, 2508.
[7] Was G S, Ampornrat P, Gupta G, et al. Journal of Nuclear Materials, 2007, 371, 176.
[8] Luo X, Tang R, Long C, et al. Nuclear Engineering Technology, 2008, 40, 147.
[9] Zhang Q, Tang R, Yin K, et al. Corrosion Science, 2009, 51, 2092.
[10] Deng P, Peng Q J, Han E H, et al. Acta Metallurgica Sinica, 2017, 53(12), 1588(in Chinese).邓平, 彭群家, 韩恩厚, 等. 金属学报, 2017, 53(12), 1588.
[11] Jin S, Guo L, Luo F, et al. Scripta Materialia, 2013, 68, 138.
[12] Zinkle S J, Was G. Acta Materialia, 2013, 61, 735.
[13] Wang Y Q, Yang B, Li N, et al. Acta Metallurgica Sinica, 2016, 52(1), 17(in Chinese).王永强, 杨滨, 李娜, 等. 金属学报, 2016, 52(1), 17.
[14] Wang B, Liu Z D, Cheng S C, et al. Journal Iron and Steel Research International, 2014, 21, 765.
[15] Peng Z W, Ren W, Yang C, et al. Acta Metallurgica Sinica, 2015, 51(11), 1325(in Chinese).彭志文, 任文, 杨超, 等. 金属学报, 2015, 51(11), 1325.
[16] Hou B R, Zhao X B, Du S M, et al. Hot Working Technology, 2016, 45(18), 245(in Chinese).侯本睿, 赵新宝, 杜双明, 等. 热加工工艺, 2016, 45(18), 245.
[17] Du B S, Wei Y Z, Zhang Z W, et al. Transactions of Materials and Heat Treatment, 2014, 35(18), 84(in Chinese).杜宝帅, 魏玉忠, 张忠文,等. 材料热处理学报, 2014, 35(18), 84.
[18] Lo K H, Shek C H, Lai J K L. Materials Science and Engineering R, 2009, 65, 39.
[19] Jiao Y, Zheng W, Guzonas D, et al. JOM, 2015, 68, 485.
[20] Morachevskii A G. Russian Journal Applied Chemistry, 2001, 74, 1610.
[21] Pardo A, Merino M C, Coy A E, et al. Acta Materialia, 2007, 55, 2239.
[22] He X L, Yang G W, Mao X P, et al. Acta Metallurgica Sinica, 2017, 53(6), 648(in Chinese).何仙灵, 杨庚蔚, 毛新平, 等. 金属学报, 2017, 53(6), 648.
[23] Farahat A I Z, El-Bitar T. Materials Science and Engineering A, 2010, 527, 3662.
[24] Yamamoto Y, Brady M P, Lu Z P, et al. Science, 2007, 316, 433.
[25] Zhou D Q, Zhao W X, Mao H H, et al. Materials Science and Enginee-ring A, 2015, 622, 91.
[26] Tanaka H, Murata M, Abe F, et al. Materials Science and Engineering A, 2001, 319, 788.
[27] Sim G M, Ahn J C, Hong S C, et al. Materials Science and Engineering A, 2005, 396, 159.
[28] Wen D H, Wang Q, Jiang B B, et al. Materials Science and Engineering A, 2018, 719, 27.
[29] Wen D H, Jiang B B, Wang Q, et al. Materials and Design, 2017, 128, 34.
[30] Capdevila C, Miller M K, Chao J. Acta Materialia, 2012, 60, 4673.
[31] Httestrand M, Larsson P, Chai G, et al. Materials Science and Engineering A, 2009, 499, 489.
[32] Hou J S, Guo J T, Yuan C, et al. Acta Metallurgica Sinica, 2016, 52(2), 168(in Chinese).侯介山, 郭建亭, 袁超, 等. 金属学报, 2016, 52(2), 168.
[33] Kosec L, avli , Kouh S, et al. Journal of Alloys and Compound, 2013, 567, 59.
[1] 张振扬, 赵利忠, 张家胜, 钟喜春, 刘仲武. La2Fe14B和Ce2Fe14B合金在快淬和热处理过程中相析出行为的比较[J]. 《材料导报》期刊社, 2018, 32(8): 1271-1275.
[2] 张旭昀, 郑冰洁, 郭斌, 吴戆, 王文泉, 王勇. 高氮奥氏体不锈钢中N与Cr、Mn、Mo键合性质研究*[J]. 《材料导报》期刊社, 2017, 31(18): 146-149.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[3] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[4] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[5] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[8] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[9] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[10] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed