Please wait a minute...
材料导报  2019, Vol. 33 Issue (20): 3489-3493    https://doi.org/10.11896/cldb.18080147
  金属及金属基复合材料 |
410不锈钢在550 ℃流动的铅铋共晶合金中的腐蚀行为
鞠娜, 雷玉成, 陈钢, 朱强, 李天庆, 王丹
江苏大学材料科学与工程学院,镇江 212013
Corrosion Behavior of Stainless Steel 410 in Flowing Lead-Bismuth Eutectic Alloy at 550 ℃
JU Na, LEI Yucheng, CHEN Gang, ZHU Qiang, LI Tianqing, WANG Dan
School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013
下载:  全 文 ( PDF ) ( 3229KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究马氏体410不锈钢在不同流速的高温液态铅铋共晶合金中的腐蚀行为,本工作对410不锈钢在相对流速为0 m/s、1.70 m/s、2.31 m/s、2.98 m/s的550 ℃液态铅铋共晶合金中进行600 h试验后的腐蚀现象进行研究,并对不同流速腐蚀试验后的腐蚀试样的表面和截面分别进行XRD、SEM、EDS检测。结果发现:随着相对流速的增大,腐蚀样品表面的氧化层越来越致密,氧化层的厚度也不断增厚。这是由于传质速率的增大加快了氧化层的生成速率;腐蚀样品表面的氧化层主要分为外氧化层和内氧化层,外氧化层主要由Fe3O4以及部分渗入的Pb-Bi组成,内氧化层主要为尖晶石结构的(Fe,Cr)3O4;在腐蚀过程中同时发生晶间腐蚀和氧化腐蚀现象。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鞠娜
雷玉成
陈钢
朱强
李天庆
王丹
关键词:  马氏体410不锈钢  铅铋共晶合金  相对流速  氧化腐蚀  晶间腐蚀    
Abstract: In order to study the corrosion behavior of martensitic stainless steel 410 in lead-bismuth eutectic alloy (LBE) at high temperature with different relative velocities, the article investigated the corrosion phenomena of stainless steel 410 in lead-bismuth eutectic alloy at 550 ℃ for 600 h with relative velocities of 0 m/s, 1.70 m/s, 2.31 m/s and 2.98 m/s. X-ray diffraction (XRD), scanning electron microscopes (SEM) and energy dispersive spectrometry (EDS) were carried out on the surface and cross-section of corrosive samples with different relative velocities. The results indicate that the oxide layer becomes denser and thicker on the surface of corrosion samples with the increase of relative flow rate, due to the increase of mass transfer rate accelerates the formation rate of oxide layer. The oxide layer on the surface of corrosion samples can be divi-ded into outer oxide layer and inner oxide layer. The outer oxide layer is mainly composed of Fe3O4 and partially infiltrated Pb-Bi and the inner oxide layer is mainly spinel (Fe, Cr)3O4. Intergranular-corrosion and oxidation-corrosion occurred simultaneously during the corrosion process.
Key words:  martensitic stainless steel 410    lead-bismuth eutectic alloy (LBE)    relative velocity    oxidation-corrosion    intergranular-corrosion
               出版日期:  2019-10-25      发布日期:  2019-08-29
ZTFLH:  TL341  
基金资助: 国家自然科学基金(51875264);国家自然科学基金青年基金(51505197)
作者简介:  鞠娜,江苏大学硕士研究生,导师雷玉成,主要从事核材料在铅铋共晶合金中腐蚀的相关研究。雷玉成,江苏大学教授,博士研究生导师,主要从事焊接工艺及设备,焊接过程控制及模拟、先进连接技术等方面的研究与开发。在国内外学术期刊上发表论文150余篇,授权国家发明专利8项。yclei@ujs.edu.cn
引用本文:    
鞠娜, 雷玉成, 陈钢, 朱强, 李天庆, 王丹. 410不锈钢在550 ℃流动的铅铋共晶合金中的腐蚀行为[J]. 材料导报, 2019, 33(20): 3489-3493.
JU Na, LEI Yucheng, CHEN Gang, ZHU Qiang, LI Tianqing, WANG Dan. Corrosion Behavior of Stainless Steel 410 in Flowing Lead-Bismuth Eutectic Alloy at 550 ℃. Materials Reports, 2019, 33(20): 3489-3493.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18080147  或          http://www.mater-rep.com/CN/Y2019/V33/I20/3489
1 Chen L, Yan Y, He Y, et al. Cemented Carbide, 2013, 30(1), 29(in Chinese).陈龙, 严莹, 何云, 等. 硬质合金, 2013, 30(1), 29.2 Zhou W J, Chen H, Wen B J. Journal of Vibration and Shock, 2006, 25(1), 32(in Chinese).周文建, 陈宏, 闻邦椿. 振动与冲击, 2006, 25(1), 32.3 Concetta F. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies, Organization for Economic Co-operation and Development, France, 2015.4 Zhou K Y, Tang Z Y, Lu Y P, et al. Journal of Materials Science & Technology, 2017, 33(2), 131.5 Zhang J S, Li N. Oxidation of Metals, 2005, 63(5-6), 353.6 Martinelli L, Balbaud-Célérier F, Terlain A, et al. Corrosion Science, 2008, 50(9), 2523.7 Martinelli L, Balbaud-Célérier F, Terlain A, et al. Corrosion Science, 2008, 50(9), 2537.8 Martinelli L, Balbaud-Célérier F, Picard G, et al. Corrosion Science, 2008, 50(9), 2549.9 Schroer C, Wedemeyer O, Skrypnik A, et al. Journal of Nuclear Mate-rials, 2012, 431(1-3), 105.10 Weisenburger A, Schroer C, Jianu A, et al. Journal of Nuclear Mate-rials, 2011, 415(3), 260.11 Tsisar V, Schroer C, Wedemeyer O, et al. Journal of Nuclear Materials, 2017, 494,422.12 Sapundjiev D, Dyck S V, Bogaerts W. Corrosion Science, 2006, 48(3), 577.13 Shi Q Q, Liu J, Luan H, et al. Journal of Nuclear Materials, 2015, 457(5), 135.14 Yamaki E, Ginestar K, Martinelli L, et al. Corrosion Science, 2011, 53(10), 3075.15 Koury D, Johnson A L, Ho T, et al. Journal of Nuclear Materials, 2013, 440(1-3), 28.16 Lambrinou K, Charalampopoulou E, Donck T V D, et al. Journal of Nuclear Materials, 2017, 490, 9.17 Zhang J S, Li N, Chen Y, et al. Journal of Nuclear Materials, 2005, 336(1), 1.18 Kurata Y, Futakawa M, Saito S. Journal of Nuclear Materials, 2005, 343(1), 333.19 Kurata Y, Futakawa M, Saito S. Journal of Nuclear Materials, 2008, 373(1-3), 164.20 Zhang J S, Li N. Corrosion Science, 2007, 49(11), 4154.21 He C H, Wang S H. Contemporary Chemical Industry, 2006, 35(1), 40(in Chinese).贺彩红, 王世宏. 当代化工, 2006, 35(1), 40.22 Chen H J, Chen Y, Zhang J S. Progress in Nuclear Energy, 2008, 50(2), 587.23 Tan T D, Chen Y. Journal of Engineering for Gas Turbines & Power, 2009, 131(3), 032903.
[1] 陈钢,雷玉成,鞠娜,朱强,王丹,李天庆. 铅铋共晶合金的流动速度对CLAM钢腐蚀行为的影响[J]. 材料导报, 2019, 33(22): 3772-3776.
[2] 秦博, 付晓刚, 马浩然, 张金权, 任丽霞, 龙斌. 铅铋合金气相氧含量控制初步实验研究[J]. 材料导报, 2019, 33(11): 1821-1824.
[3] 肖龙仁, 雷玉成, 朱强, 李天庆, 陈钢, 罗梦, 赵军, 陈文彬. 不同合金成分的T91/316L焊缝在550 ℃高流速液态铅铋共晶合金中的腐蚀行为[J]. 材料导报, 2019, 33(11): 1805-1812.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed