Please wait a minute...
材料导报  2019, Vol. 33 Issue (22): 3772-3776    https://doi.org/10.11896/cldb.18110053
  金属与金属基复合材料 |
铅铋共晶合金的流动速度对CLAM钢腐蚀行为的影响
陈钢,雷玉成,鞠娜,朱强,王丹,李天庆
江苏大学材料科学与工程学院,镇江 212013
Corrosion Behavior of CLAM Steel in Various Flow Velocities of Pb-Bi Eutectic Alloy
CHEN Gang, LEI Yucheng, JU Na, ZHU Qiang, WANG Dan, LI Tianqing
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013
下载:  全 文 ( PDF ) ( 4636KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究中国低活化马氏体(CLAM)钢在不同相对流速铅铋共晶合金(LBE)中的腐蚀行为,本研究对CLAM钢在550 ℃不同流动速度(0 m/s、1.70 m/s、2.98 m/s、3.69 m/s、4.77 m/s)的液态LBE中进行了500 h的腐蚀试验。试验后分别对腐蚀试样表面进行SEM、XRD检测以及对试样截面进行SEM-EDS和面扫描检测。结果表明,经过500 h腐蚀试验后的试样表面均形成双层结构的氧化层,外氧化层由Fe3O4组成,内氧化层由(Fe,Cr)3O4组成。在LBE相对流速从0 m/s增大到2.98 m/s的过程中,试样表面氧化层的厚度逐渐增大,这是由于相对流速的增大提高了Fe元素的溶解速率和O元素的扩散迁移速率,进而导致试样表面发生严重的氧化腐蚀。而当LBE相对流速从2.98 m/s继续增大到4.77 m/s时,CLAM钢表面的氧化层厚度逐渐减小,这是由于随着LBE相对流速的进一步增大,试样表面冲蚀腐蚀程度逐渐加重,外氧化层厚度因遭受一定程度的剥落而急剧减小,进而使得试样表面总氧化层的厚度逐渐减小。本研究结果为未来ADS嬗变系统的实际应用提供了数据支持和参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈钢
雷玉成
鞠娜
朱强
王丹
李天庆
关键词:  中国低活化马氏体(CLAM)钢  铅铋共晶合金(LBE)  流动速度  氧化腐蚀  腐蚀速率    
Abstract: Aiming at exploring the corrosion behavior of CLAM steel in lead bismuth eutectic alloy (LBE) with diverse relative flow velocities, the corrosion tests of CLAM steel in liquid LBE with diverse flow velocities (0 m/s, 1.70 m/s, 2.98 m/s, 3.69 m/s, 4.77 m/s) at 550 ℃ for 500 h were carried out. The SEM, XRD were employed to characterize the the surface of CLAM steel samples after corrosion, and the SEM-EDS analysis and mapping scanning were conducted on the cross section of the corrosion samples of CLAM steel, respectively. After the corrosion test for 500 h, a bilayer oxide structure could be found on the surface of the CLAM steel samples. The outer oxide layer was composed of Fe3O4, and the inner oxide layer was composed of (Fe,Cr)3O4. When the relative flow velocity of LBE increased from 0 m/s to 2.98 m/s, the thickness of the oxide layer on the samples grew gradually, which could be attributed to the acceleration of the dissolution of Fe and diffusion migration of O by the increasing LBE relative flow rate, leading to critical oxidation corrosion. However, when the relative flow velocity of LBE rose from 2.98 m/s to 4.77 m/s, the thickness of the oxide layer on the samples decreased gradually, which because the degree of erosion-corrosion aggravated with the increase of the LBE flow velocity, and the oxide layer suffered a certain degree of spalling. Therefore, the thickness of the oxide layer gradually decreased with the increase of the LBE flow velocity.The results of the study on the corrosion behavior of CLAM steel in liquid LBE with various flow velocities are expected to provide data support and reference for the practical application of ADS system in the future.
Key words:  China low activation martensitic (CLAM) steel    lead bismuth eutectic alloy (LBE)    flow velocity    oxidation corrosion    corrosion rate
               出版日期:  2019-11-25      发布日期:  2019-09-16
ZTFLH:  TL341  
基金资助: 国家自然科学基金(51875264);国家自然科学基金青年基金(51505197)
作者简介:  陈钢,2015年9月至2019年6月在江苏大学攻读博士,主要从事核材料在铅铋共晶合金中的腐蚀相关研究,在国内外重要期刊上发表文章10余篇。
雷玉成,1962年生,博士,教授,博士研究生导师,主要从事先进材料的连接技术和焊接过程控制及模拟的研究,负责过多项国家基金项目,在国内外学术期刊上发表论文150余篇,授权国家发明专利8项。
引用本文:    
陈钢, 雷玉成, 鞠娜, 朱强, 王丹, 李天庆. 铅铋共晶合金的流动速度对CLAM钢腐蚀行为的影响[J]. 材料导报, 2019, 33(22): 3772-3776.
CHEN Gang, LEI Yucheng, JU Na, ZHU Qiang, WANG Dan, LI Tianqing. Corrosion Behavior of CLAM Steel in Various Flow Velocities of Pb-Bi Eutectic Alloy. Materials Reports, 2019, 33(22): 3772-3776.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110053  或          http://www.mater-rep.com/CN/Y2019/V33/I22/3772
[1] Zhan W L, Xu H S. Bulletin of the Chinese Academy of Sciences, 2012, 27(3), 375(in Chinese).詹文龙, 徐瑚珊. 中国科学院院刊, 2012, 27(3), 375.
[2] Zhao Z X, Xia H H. China Nuclear Power, 2009, 2(3), 202(in Chinese).赵志祥, 夏海鸿. 中国核电, 2009, 2(3), 202.
[3] Loewen E P, Tokuhiro A T. Journal of Nuclear Science and Technology, 2003, 40(8), 614.
[4] Barbier F, Benamati G, Fazio C, et al. Journal of Nuclear Materials, 2001, 295(2), 149.
[5] Kikuchi K, Saito S, Kurata Y, et al. JSME International Journal Series B, 2004, 47(2), 332.
[6] Liu S J, Huang Q Y, Li C J, et al. Fusion Engineering & Design, 2009, 84(7), 1214.
[7] Zhang J, Li N. Journal of Nuclear Materials, 2008, 373(1), 351.
[8] Müller G, Heinzel A, Konys J, et al. Journal of Nuclear Materials, 2002, 301(1), 40.
[9] Schroer C, Vob Z, Wedemeyer O, et al. Journal of Nuclear Materials, 2006, 356(1), 189.
[10] Tsisar V, Schroer C, Wedemeyer O, et al. In: 22nd International Conference on Nuclear Engineering (ICONE22). Prague, 2014, pp. V003T05A016.
[11] Zhang J S, Li N, Chen Y, et al. Journal of Nuclear Materials, 2005, 336(1), 1.
[12] Martín-Muoz F J, Soler-Crespo L, Gómez-Briceo D. Journal of Nuclear Materials, 2011, 416(1), 87.
[13] Zhang J S, Li N. Corrosion Science, 2007, 49(11), 4154.
[14] Martinelli L, Balbaud-Célérier F, Terlain A, et al. Corrosion Science, 2008, 50, 2523.
[15] Martinelli L, Balbaud-Célérier F, Terlain A, et al. Corrosion Science, 2008, 50, 2537.
[1] 鞠娜, 雷玉成, 陈钢, 朱强, 李天庆, 王丹. 410不锈钢在550 ℃流动的铅铋共晶合金中的腐蚀行为[J]. 材料导报, 2019, 33(20): 3489-3493.
[2] 肖龙仁, 雷玉成, 朱强, 李天庆, 陈钢, 罗梦, 赵军, 陈文彬. 不同合金成分的T91/316L焊缝在550 ℃高流速液态铅铋共晶合金中的腐蚀行为[J]. 材料导报, 2019, 33(11): 1805-1812.
[3] 杨贵荣,宋文明,董雪娇,张玉福,王富强,李 健,马 颖. CO2分压对20#钢在CO2/H2O气液两相塞状流中腐蚀行为的影响[J]. 《材料导报》期刊社, 2018, 32(9): 1557-1563.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed