Please wait a minute...
材料导报  2019, Vol. 33 Issue (22): 3777-3782    https://doi.org/10.11896/cldb.18100209
  金属与金属基复合材料 |
连续柱状晶Cu-ECAP中的晶界演变及其与剪切带的交互作用
郭廷彪1,2,,魏士儒1,吴一博1,王炳1,马迪1
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室, 兰州 730050
2 兰州理工大学有色金属合金及加工教育部重点实验室, 兰州 730050
Grain Boundary Evolution and Its Interaction with Shear Band in Continuous Columnar Crystal Cu-ECAP
GUO Tingbiao1,2, WEI Shiru1, WU Yibo1, WANG Bing1, MA Di1
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050
2 Key Laboratory of Non-ferrous Metal Alloys and Processing, Ministry of Education, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 3458KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 金属发生塑性变形时形成的剪切带在高应变状态下会被分割为孪晶-基体片层状组织,而纳米尺度的孪晶界能实现材料强塑性的高度匹配。因此,利用等通道转角挤压(ECAP)技术研究剪切带的形成与作用可为材料的强塑性匹配提供有效支持。通过对具有特殊晶界角度的连续柱状晶纯Cu进行1道次ECAP变形,研究变形过程中晶界的演变,分析变形过程中剪切带的形成机制及与晶界的交互作用,测试了不同晶界角度试样变形后的力学性能。结果表明:ECAP 变形后,0°晶界发生弯折,内角处晶界顺时针转动50°,30°晶界顺时针转动5°,45°晶界弯曲并呈现出“汤匙”状,60°晶界中心发生弯曲,90°晶界未发生变形。试样变形过程具有多个受力区域,各区域应力状态不同,多种应力交替作用使变形过程中的应变分布极不均匀,从而导致宏观变形存在较大差异。拉伸实验结果表明,具有0°晶界的晶体抗拉强度最高,达到325 MPa,其次是具有45°晶界的晶体,达到295 MPa,而具有60°晶界的晶体抗拉强度最小,为230 MPa。晶体变形后晶粒内形成大量的剪切带,剪切带与晶界的交互作用使晶界发生弯曲。剪切带与晶粒取向及晶界夹角的不同是造成材料变形后抗拉强度产生较大差异的因素之一。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭廷彪
魏士儒
吴一博
王炳
马迪
关键词:  连续柱状晶Cu  等通道转角挤压  晶界演变  剪切行为    
Abstract: The shear band of metals formed during plastic deformation will be divided into a twinning and matrix lamellar structure under high strain condition, and the nano-scale twin boundary can achieve a high degree of matching between strength and plasticity of metals. Accordingly, it will provide an effective support for the strength and plasticity matching of materials through studying the formation and action of shear bands by means of equal channel angular extrusion (ECAP) technique. In this work, one pass ECAP was conducted on the continuous columnar crystal pure Cu with special grain boundary angle, the evolution of grain boundary during deformation was studied, the formation mechanism of shear band as well as its interaction with grain boundary during deformation were analyzed, and the mechanical properties of samples with different orie-ntations were tested. As could be seen from the results, after ECAP deformation, the 0° grain boundary was bent, the grain boundary at the inner corner rotated 50° clockwise, 30° grain boundary rotated 5° clockwise, 45° grain boundary was also bent and showed a "spoon" shape, the center of 60° grain boundary was bent, and there was no deformation occurred at 90° grain boundary. Multiple stress regions with diverse stress states appeared during the deformation process of the sample. Alternating action of various stresses brought about the nonuniform strain distribution during the deformation process, resulting in great differences in macroscopic deformation. The tensile test results indicated that the crystal with 0° grain boundary possessed the highest tensile strength of 325 MPa, followed by the crystal with 45° grain boundary (295 MPa), and the crystal with 60° grain boundary held the lowest tensile strength of 230 MPa. A large number of shear bands were formed in the grains after deformation, and the interaction between the shear bands and the grain boundary results in the bending of the grain boundary. The difference of grain orientation and grain boundary angle between the shear band and the grain boundary is one of the factors that cause the great difference in tensile strength after deformation.
Key words:  continuous columnar crystal copper    equal channel angular pressing    grain boundary evolution    shear behavior
               出版日期:  2019-11-25      发布日期:  2019-09-16
ZTFLH:  TG379  
基金资助: 国家自然科学基金(51861022;51261016)
作者简介:  郭廷彪,兰州理工大学,副教授。2010年7月毕业于兰州理工大学,获得材料加工工程博士学位。2011年加入兰州理工大学工作至今,主要从事金属材料的强韧化调控,重点研究高强高导铜的强韧化调控。在国内外重要期刊发表文章30余篇。
引用本文:    
郭廷彪, 魏士儒, 吴一博, 王炳, 马迪. 连续柱状晶Cu-ECAP中的晶界演变及其与剪切带的交互作用[J]. 材料导报, 2019, 33(22): 3777-3782.
GUO Tingbiao, WEI Shiru, WU Yibo, WANG Bing, MA Di. Grain Boundary Evolution and Its Interaction with Shear Band in Continuous Columnar Crystal Cu-ECAP. Materials Reports, 2019, 33(22): 3777-3782.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100209  或          http://www.mater-rep.com/CN/Y2019/V33/I22/3777
[1] An X H, Han W Z, Huang C X, et al. Applied Physics Letters, 2008, 92(20), 103.
[2] Gao L, Chen R S, Han E H. Journal of Alloys & Compounds, 2009, 481(1-2), 379.
[3] Lu K, Lu L, Suresh S. Science, 2009, 324(5925), 349.
[4] Ning Y T, Zhang X H, Wu Y J. Chinese Journal of Nonferrous Metals, 2007, 17(1), 68(in Chinese).宁远涛, 张晓辉, 吴跃军. 中国有色金属学报, 2007, 17(1), 68.
[5] Wang Y M, Ma E. Acta Materialia, 2004, 52(6), 1699.
[6] Zhao Y H, Zhu Y T, Liao X Z, et al. Applied Physics Letters, 2006, 89(12), 887.
[7] Lu L, Lu K. Science, 2004, 304(5669), 422.
[8] Lu L, Lu K. Acta Metallurgica Sinica, 2010(11), 1422(in Chinese).卢磊, 卢柯. 金属学报, 2010(11), 1422
[9] Lu L, Chen X H, Huang X X, et al. China Basic Science, 2010, 12(1), 16(in Chinese).卢磊, 陈先华, 黄晓旭, 等. 中国基础科学, 2010, 12(1), 16.
[10] Tao N R, Lu K. Acta Metallurgica Sinica, 2014, 50(2), 141(in Chinese).陶乃镕, 卢柯. 金属学报, 2014, 50(2), 141.
[11] An X H, Wu S D, Zhang Z F. Acta Metallurgica Sinica, 2014, 50(2), 191(in Chinese).安祥海,吴世丁,张哲峰.金属学报, 2014, 50(2), 191.
[12] Wu S D, An X H, Han W Z, et al. Acta Metallurgica Sinica, 2010, 46(3), 257(in Chinese).吴世丁, 安祥海, 韩卫忠等. 金属学报, 2010, 46(3), 257.
[13] Purcek G, Yanar H, Demirtas M, et al. Materials Science & Engineering A, 2016, 649(1), 114.
[14] Tao N R, Lu K. Scripta Materialia, 2009, 60(12), 1039.
[15] Guo T B, Li Q, Wang C, et al. Acta Metallurgica Sinica, 2017, 53(8), 991(in Chinese).郭廷彪, 李 琦, 王 晨, 等. 金属学报, 2017, 53(8), 991.
[16] Wei W, Wang S L, Wei K X, et al. Journal of Alloys & Compounds, 2016, 678, 506.
[17] Gu Y X, Ma A B, Jiang J H, Li H Y, Song D, er al. Materials Characterization,2018,138, 38.
[18] Kommel L, Hussainova I, Volobuev O. Materials & Design, 2007, 28(7), 2121.
[19] Li Y, Li S X, Li G Y. Acta Metallurgica Sinica, 2002, 38(8), 819(in Chinese).李 勇, 李守新, 李广义. 金属学报, 2002, 38(8), 819.
[20] Xu Y B, Bai Y L. Advances in Mechanics, 2007, 37(4), 496(in Chinese).徐永波,白以龙. 力学进展, 2007, 37(4), 496.
[21] Gao Y J, Lu C J, Huang L L, et al. Acta Metallurgica Sinica, 2014, 50(1), 110(in Chinese).高英俊, 卢成健, 黄礼琳, 等. 金属学报, 2014, 50(1), 110.
[22] Wang Q J, Xu C Z, Zheng M S, et al. Acta Metallurgica Sinica, 2007, 43(5), 498(in Chinese).王庆娟, 徐长征, 郑茂盛, 等. 金属学报, 2007, 43(5), 498.
[23] Hiroyuki Miyamoto,Takumi Ikeda, et al. Materials Science & Enginee-ring A, 2011, 528(6), 2602.
[24] Wang W Y, Pan Q L, Wang X D,et al. Materials Science & Engineering A,2018,731 195.
[1] 郭廷彪,李 琦,王 晨,张 锋, 丁雨田,贾 智,唐兴昌. 低温等通道转角挤压中定向凝固纯铜的组织及性能演变[J]. 《材料导报》期刊社, 2018, 32(10): 1650-1654.
[2] 章震威, 王军丽, 张清龙, 史庆南. 等通道转角挤压制备超细晶材料的研究与发展[J]. 材料导报, 2017, 31(1): 116-125.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[4] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[5] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[8] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed