Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1650-1654    https://doi.org/10.11896/j.issn.1005-023X.2018.10.015
  材料研究 |
低温等通道转角挤压中定向凝固纯铜的组织及性能演变
郭廷彪1,2,李 琦1,王 晨1,张 锋1 , 丁雨田1,2,贾 智1,2,唐兴昌1,2
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050;
2 兰州理工大学有色金属合金及加工教育部重点实验室,兰州 730050
The Evolution of Microstructure and Properties of Directional Solidification Pure Copper During Equal Channel Angular Pressing at Low Temperature
GUO Tingbiao1,2, LI Qi1, WANG Chen1, ZHANG Feng1, DING Yutian1,2, JIA Zhi1,2, TANG Xingchang1,2
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050;
2 Key Laboratory of Non-ferrous Metal Alloys and Processing of Ministry of Education, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 4214KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用光学显微镜(OM)和XRD技术对干冰冷却后的定向凝固纯铜(99.99%)经等通道转角挤压(ECAP)时的微观组织演变规律进行研究,并测试了ECAP后定向凝固纯铜的硬度及导电性能。结果表明,定向凝固纯铜在低温下经A和C路径变形后易于形成取向一致的纤维组织,并且保持(111)面的择优取向特征,而经Bc路径变形后,柱状晶破碎,形成均匀的等轴晶,且各晶面逐渐趋于随机取向;经过1道次变形后,各路径硬度大幅增加,约为原来的1.8倍,在随后的挤压中,硬度增加缓慢,经4道次ECAP后,Bc路径的硬度有所下降;在低应变下,晶粒取向的一致性使得导电率增加;随着应变的增加,晶格畸变使得电子发生散射,使导电率略有降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭廷彪
李 琦
王 晨
张 锋
丁雨田
贾 智
唐兴昌
关键词:  定向凝固纯铜  等通道转角挤压(ECAP)  晶粒取向  微观组织  导电率    
Abstract: The microstructure evolution of directional solidification structure in pure copper (99.99%) during equal channel angular pressing (ECAP) after cooling with dry ice was investigated by OM and XRD, the hardness and conductivity were tested. The results manifested that the fibrous structure with same orientation was formed in directional solidification structure in pure copper by route A and C at low temperature, and the characterization of (111) preferred orientation was remained. After deformation by route Bc, columnar crystal of directional solidification structure in pure copper was broken, and homogeneous equiaxed grains were formed, at the same time, the grain orientation tended to be random. The hardness of each route increased drastically after one pass extrusion, which was about 1.8 times in compare with hardness of original sample, with the increase of extrusion passes, the hardness increased slowly, whereas the hardness decreased slightly after four passes extrusion by route Bc. The consistency of grain orientation made the conductivity increased in the condition of low strain, however, with the increase of strain, lattice distortion caused electron scattering, which leaded to a slight decrease in conductivity.
Key words:  directional solidification structure in pure copper    equal channel angular pressing(ECAP)    grain orientation    microstructure    electrical conductivity
出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TG379  
基金资助: 国家自然科学基金(51261016)
作者简介:  郭廷彪: 男,1974年生,博士,副教授,硕士研究生导师,主要从事金属材料强韧化及组织性能调控的研究 E-mail:guotb@lut.cn
引用本文:    
郭廷彪,李 琦,王 晨,张 锋, 丁雨田,贾 智,唐兴昌. 低温等通道转角挤压中定向凝固纯铜的组织及性能演变[J]. 《材料导报》期刊社, 2018, 32(10): 1650-1654.
GUO Tingbiao, LI Qi, WANG Chen, ZHANG Feng, DING Yutian, JIA Zhi, TANG Xingchang. The Evolution of Microstructure and Properties of Directional Solidification Pure Copper During Equal Channel Angular Pressing at Low Temperature. Materials Reports, 2018, 32(10): 1650-1654.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.015  或          https://www.mater-rep.com/CN/Y2018/V32/I10/1650
1 Fukuda Y, Oh-Ishi K, Furukawa M, et al. Influence of crystal orientation on the processing of copper single crystals by ECAP [J]. Journal of Materials Science,2007,42(5):1501.
2 Mirzakhani B, Payandeh Y. Combination of severe plastic deformation and precipitation hardening processes affecting the mechanical properties in Al-Mg-Si alloy [J]. Materials & Design,2015,68(68):127.
3 Callister W D. Student solutions manual to accompany materials science and engineering an introduction [M]. New York: John Wiley and Sons,2000:35.
4 Morris D G, Gutierrez-Urrutia I, Munoz-Morris M A. Evolution of microstructure of an iron aluminide during severe plastic deformation by heavy rolling [J]. Journal of Materials Science,2008,43(23):7438.
5 Wang C P, Li F G, Lei W, et al. Review on modified and novel techniques of severe plastic deformation [J]. Science China Technological Sciences,2012,55(9):2377.
6 Chen Y J, Wang Q D, Lin J B, et al. Grain refinement of magnesium alloys processed by severe plastic deformation[J]. Transactions of Nonferrous Metals Society of China,2014,24(12):3747.
7 Shin M H, Yu C Y, Kao P W, et al. Microstructure and flow stress of copper deformed to large plastic strains [J]. Scripta Materialia,2001,45(7):793.
8 Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from sever plastic deformation [J]. Progress in Materials Science,2000,45(2):103.
9 Ni S, Liao X Z, Zhu Y T. Effect of severe plastic deformation on the structure and mechanical properties of bulk nanocrystalline metals [J]. Acta Metallurgica Sinica,2014,50(2):156(in Chinese).
倪颂,廖晓舟,朱运田.剧烈塑性变形对块体纳米金属材料结构和力学性能的影响[J].金属学报,2014,50(2):156.
10 Wu S D, An X H, Han W Z, et al. Microstructure evolution and mechanical properties of fcc metallic materials subjected to equal channel angular pressing [J]. Acta Metallurgica Sinica,2010,46(3):257(in Chinese).
吴世丁,安祥海,韩卫忠,等.等通道转角挤压过程中fcc金属的微观结构演化与力学性能[J].金属学报,2010,46(3):257.
11 Guo T B, Ding Y T, Xu G J, et al. Mechanical properties of single crystal copper and polycrystalline copper during super plastic and cyclic deformation [J]. The Chinese Journal of Nonferrous Metals,2010,20(7):1375(in Chinese).
郭廷彪,丁雨田,许广济,等.强塑性循环变形中单晶铜和多晶铜的力学性能[J].中国有色金属学报,2010,20(7):1375.
12 Lu K, Lu L. Progress in mechanical properties of nanocrystalline materials [J]. Acta Metallurgica Sinica,2000,36(8):785(in Chinese).
卢柯,卢磊.金属纳米材料力学性能的研究进展[J].金属学报,2000,36(8):785.
13 Li M Q, Zhang C, Luo J, et al. Thermomechanical coupling simulation and experimental study in the isothermal ECAP processing of Ti-6Al-4V alloy [J]. Rare Metals,2010,29(6):613.14 Guo T B, Ding Y T, Yuan X F, et al. Microstructure and orientation evolution of unidirectional solidification pure copper during ECAP [J]. Rare Metal Materials and Engineering,2011,40(3):171.
15 Guo T B, Ding Y T, Hu Y, et al. Study on the materials flowing and deformation behavior by equal channel angular pressing(ECAP) [J]. Materials Review B: Research papers,2009,23(9):93(in Chinese).
郭廷彪,丁雨田,胡勇,等.等径角挤压过程中材料的流变行为研究[J].材料导报:研究篇,2009,23(9):93.
16 He Y B, Pan Q L, Qin Y J, et al. Microstructure and mechanical properties of ultra-fine grain ZK60 magnesium alloy process by equal angular pressing [J]. The Chinese Journal of Nonferrous Metals,2010,20(12):2274(in Chinese).
何运斌,潘清林,覃银江,等.等通道角挤压制备细晶ZK60镁合金的组织与力学性能[J].中国有色金属学报,2010,20(12):2274.
17 Wen Y N, Zhang J M. Surface energy calculation of the bcc metals by using the MAEAM [J]. Computational Materials Science,2007,144(3):163.
18 Yun X B, Song B Y, Chen L. Ultra-fine grain copper prepared by continuous equal channel angular press [J]. The Chinese Journal of Nonferrous Metals,2006,16(9):1563(in Chinese).
运新兵,宋宝韫,陈莉.连续等径角挤压制备超细晶铜[J].中国有色金属学报,2006,16(9):1563.
19 Yamakov V, Wolf D, Salazar M, et al. Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation [J]. Acta Metallurgica Sinica,2001,49(14):2713.
[1] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[2] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[3] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[4] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[5] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[6] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[7] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[8] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[9] 朱轩,杨晓益, 陆鑫, 杨书汉. 电弧脉冲对6005A-T6铝合金CMT-P焊接接头组织和性能的影响[J]. 材料导报, 2024, 38(23): 23090035-7.
[10] 王沛锦, 卓家乐, 艾桃桃, 董洪峰. L12型纳米有序相析出强化(FeNiCoCr)93Al5Ti2高熵合金[J]. 材料导报, 2024, 38(22): 23110207-5.
[11] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[12] 郭伟玲, 邢志国, 李鹏, 马国政, 王海斗. 冷喷涂铜基复合涂层及后处理技术的研究现状[J]. 材料导报, 2024, 38(19): 23010049-13.
[13] 杨贵荣, 宋文明, 许可, 马颖. CeO2对WC/Ni复合熔覆层微观组织与性能的影响[J]. 材料导报, 2024, 38(19): 23070014-7.
[14] 郭晖, 曹晓卿, 孙逸舟, 林鹏, 刘亚玲, 李培友. 轻质高熵合金微观组织及力学性能研究进展[J]. 材料导报, 2024, 38(18): 23020177-10.
[15] 陶宏伟, 禹庭, 曹明轩, 吴仲恒, 蔡召兵, 刘敏, 闫星辰. 激光选区熔化CoCrMo合金的组织研究及生物应用[J]. 材料导报, 2024, 38(17): 23030026-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed