Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 23010049-13    https://doi.org/10.11896/cldb.23010049
  金属与金属基复合材料 |
冷喷涂铜基复合涂层及后处理技术的研究现状
郭伟玲1,*, 邢志国1, 李鹏1,2, 马国政1, 王海斗1,3
1 陆军装甲兵学院再制造技术国家重点实验室,北京 100072
2 江西理工大学机电工程学院,江西 赣州 341000
3 陆军装甲兵学院机械产品再制造国家工程研究中心,北京 100072
Research Status of Cold Sprayed Cu-based Composite Coatings and Post-Process Treatments
GUO Weiling1,*, XING Zhiguo1, LI Peng1,2, MA Guozheng1, WANG Haidou1,3
1 National Key Laboratory of Remanufacturing Technology, Army Academy of Armored Forces, Beijing 100072, China
2 College of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
3 National Engineering Research Center for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
下载:  全 文 ( PDF ) ( 42563KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 冷喷涂技术的固态低温特性使其成为制备铜基复合涂层的重要手段之一,通过研究沉积机理、优化制备过程参数,调控后处理技术,可以改善铜基复合涂层的综合性能,从而扩大铜基复合涂层在功能性涂层、增材制造及增材再制造等领域的应用范围。文中从铜基金属复合涂层与铜基陶瓷复合涂层两方面综述了冷喷涂铜基复合涂层形成的机理,归纳了冷喷涂铜基金属复合涂层的四大结合机理和铜基陶瓷复合涂层的三个结合假设;分析冷喷涂过程参数对复合涂层微观结构及综合性能的影响,重点探讨了喷嘴结构与材质、载气类型与温度、喷涂颗粒结构与粒径、基体硬度与粗糙度等对复合涂层综合性能的影响;总结了多种后处理技术对复合涂层微观结构及综合性能的影响,以期为冷喷涂铜基复合涂层的研究与应用提供借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭伟玲
邢志国
李鹏
马国政
王海斗
关键词:  冷喷涂  铜基复合涂层  后处理技术  微观组织  力学性能    
Abstract: The low processing temperature feature makes cold spray an effective approach to deposit Cu-based composite coatings with high quality.The process parameters of cold spray can control the microstructure of the composite coatings, and then control the overall performance of the composite coatings, so that Cu-based composite coatings can be widely used in functional coatings, high efficiency additive manufacturing and additive remanufacturing.In this review, the existing literature is summarized from three aspects: basic theory, process parameters and post-process treatments for tailoring the microstructure and mechanical properties of cold sprayed Cu-based composite coatings, bonding mechanism and hypothesis of cold sprayed Cu-based composite coatings is summarized, effect of construction and material of nozzle, propellant gas condition, initial feedstock powders, substrate surface state and process parameters of post-processing technology on the microstructure and mechanical properties of cold sprayed Cu-based composite coatings is discussed, which expected to provide references for the research and application of cold sprayed Cu-based composite coatings.
Key words:  cold spray    Cu-based composite coating    post-process treatments    microstructure    mechanical property
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  TB33  
基金资助: 国家自然科学基金(52005511; 52130509);重大项目 (2021-JCJQ-ZD-302)
通讯作者:  *郭伟玲,通信作者,陆军装甲兵学院再制造技术国家重点实验室副研究员。2010年北京师范大学物理化学专业博士毕业。目前主要从事表面工程、冷喷涂技术等方面的研究工作。主持项目3项,参与项目10余项,发表学术论文20余篇,获授权国家发明专利2项,受理5项,参编专著3部。guoweiling_426@163.com   
引用本文:    
郭伟玲, 邢志国, 李鹏, 马国政, 王海斗. 冷喷涂铜基复合涂层及后处理技术的研究现状[J]. 材料导报, 2024, 38(19): 23010049-13.
GUO Weiling, XING Zhiguo, LI Peng, MA Guozheng, WANG Haidou. Research Status of Cold Sprayed Cu-based Composite Coatings and Post-Process Treatments. Materials Reports, 2024, 38(19): 23010049-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23010049  或          http://www.mater-rep.com/CN/Y2024/V38/I19/23010049
1 Terrone M, Lordejani A A, Kondas J, et al. Surface and Coating Technology, 2021, 421, 127423.
2 Ko K H, Choi J O, Lee H, et al. Journal of Materials Processing Technology, 2014, 214, 1530.
3 Raoelison R N, Koithara L L, Costil S. CIRP Journal of Manufacturing Science and Technology, 2021, 35, 63.
4 Han B Y, Gao X H, Du W B, et al. Materials Reports, 2023, 37(10), 21100124 (in Chinese).
韩冰源, 高祥涵, 杜文博, 等. 材料导报, 2023, 37(10), 21100124.
5 Alkhimov A P, Kosarev V F, Papyrin A N. Soviet Physics Doklady, 1990, 35, 1047.
6 Alkhimov A P, Papyrin A N, Kosarev V F, et al. U. S. patent application, US5302414, 1994.
7 Assadi H, Kreye H, Gartner F, et al. Acta Materialia, 2016, 116, 382.
8 Wang R C, Wang W Y, Yin F S, et al. Materials Reports, 2021, 35(19), 19142 (in Chinese).
王荣城, 王文宇, 殷凤仕, 等. 材料导报, 2021, 35(19), 19142.
9 Hassani-gangaraj S M, Moridi A, Guagliano M. Surface Engineering, 2015, 31, 803.
10 Ghelichi R, Macdonald D, Bagherifard S, et al. Acta Materialia, 2012, 60, 6555.
11 Yin S, Cavaliere P, Aldwell B, et al. Additive Manufacturing, 2018, 21, 628.
12 Eason P D, Fewkes J A, Kennett S C, et al. Materials Science and Engineering A, 2011, 528, 8174.
13 Chen W Y, Tan H, Cheng J, et al. Materials Reports, 2022, 36(7), 20180083 (in Chinese).
陈文元, 谈辉, 程军, 等. 材料导报, 2022, 36(7), 20180083.
14 Champagne V, Helfritch D. Journal of Materials Science and Technology, 2015, 31, 627.
15 Jones R, Matthews N, Rodopoulos C A, et al. International Journal of Fatigue, 2011, 33(9), 1257.
16 Terrone M, Lordejani A A, Kondas J, et al. Surface and Coating Technology, 2021, 421, 127423.
17 Yang L J, Li Z X, Huang C L, et al. Materials Reports, 2018, 32(2), 412 (in Chinese).
杨理京, 李争显, 黄春良, 等. 材料导报, 2018, 32(2), 412.
18 Viscusi A, Ammendola P, Astarita A, et al. Journal of Materials Processing Technology, 2016, 231, 26.
19 Viscusi A, Durante M, Astarita A, et al. Procedia Manufacturing, 2020, 47, 761.
20 Krebs S, Garther F, Klassen T. Journal of Thermal Spray Technology, 2015, 24, 126.
21 Li W Y, Guo X P, Verdy C, et al. Scripta Materialia, 2006, 55, 327.
22 Lee J G, Lee J H, An S, et al. Journal of Alloys and Compounds, 2017, 695, 3714.
23 Li W Y, Assadi H, Gaertner F, et al. Critical Reviews in Solid State and Materials Science, 2019, 44(2), 109.
24 Chen Q, Yu M, Cao K, et al. Surface and Coating Technology, 2022, 434, 128135.
25 Vladislav S S, Tomila M V, Artem A F, et al. International Journal of Refractory Metals and Hard Materials, 2022, 106, 105866.
26 Zhang Y Y, Epshteyn Y, Chromik R R. Tribology International, 2018, 123, 96.
27 Huang C J, Arseenko M, Zhao L, et al. Materials and Design, 2021, 206, 109826.
28 Luo X T, Xie T, Li C J, et al. China Surface Engineering, 2020, 33(4), 68 (in Chinese).
雒晓涛, 谢天, 李长久, 等.中国表面工程, 2020, 33(4), 68.
29 Assadi H, Kreye H, Gartner F, et al. Acta Materialia, 2016, 116, 382.
30 Assadi H, Gartner F, Kreye H. Scripta Materialia, 2019, 162, 512.
31 Schmidt T, Gartner F, Assadi H, et al. Acta Materialia, 2006, 54, 729.
32 Assadi H, Gartner F, Stoltenhoff T, et al. Acta Materialia, 2003, 51, 4379.
33 Ge Y, Luo X T, Li C J. Surface Technology, 2020, 49(7), 60 (in Chinese).
葛益, 雒晓涛, 李长久. 表面技术, 2020, 49(7), 60.
34 Hassani-gangaraj M, Veysset D, Champagne V K, et al. Acta Materialia, 2018, 158, 430.
35 Hassani-gangaraj M, Veysset D, Keith A, et al. Scripta Materialia, 2018, 145, 9.
36 Hassani-gangaraj M, Veysset D, Champagne V K, et al. Scripta Materialia, 2018, 162, 515.
37 Li Y J, Wei Y K, Luo X T, et al. Journal of Materials Science and Technology, 2020, 40, 185.
38 Li C J, Wang H T, Zhang Q, et al. Journal of Thermal Spray Technology, 2010, 19, 95.
39 Li W Y, Zhang C, Wang H T, et al. Applied Surface Science, 2007, 253, 3557.
40 Li W Y, Li C J, Liao H L. Applied Surface Science, 2010, 256, 4953.
41 Liu T, Leazer J D, Brewer L N. Journal of Acta Materialia, 2019, 168, 13.
42 Maev R G, Leshchynsky V. Journal of Thermal Spray Technology, 2006, 15, 198.
43 Irissou E, Legoux J G, Arsenault B, et al. Journal of Thermal Spray Technology, 2007, 16, 661.
44 Shkodkin A, Kashirin A, Klyuev O, et al. Journal of Thermal Spray Technology, 2006, 15, 382.
45 Xie Y, Planche M P, Raoelison R, et al. Surface and Coatings Technology, 2017, 318, 99.
46 Fernandez R, Jodoin B. Journal of Thermal Spray Technology, 2019, 28, 737.
47 Klinkov S V, Kosarev V F. Journal of Thermal Spray Technology, 2021, 30, 1081.
48 Fernandez R, Jodoin B. Journal of Thermal Spray Technology, 2018, 27, 603.
49 He L W, Hassani M. Journal of Thermal Spray Technology, 2020, 29, 1565.
50 Dykhuizen R, Smith M. Journal of Thermal Spray Technology, 1998, 7, 205.
51 Nastic A, Jodoin B, Poirier D, et al. Surface and Coatings Technology, 2021, 406, 126735.
52 Li W Y, Liao H, Wang H T, et al. Applied Surface Science, 2006, 253, 708.
53 Macdonald D, Leblanc-robert S, Fernndez R, et al. Journal of Thermal Spray Technology, 2016, 25, 1149.
54 Li Y J, Luo X T, Rashid H, et al. Journal of Alloys and Compounds, 2018, 740, 406.
55 Li Y J, Luo X T, Li C J. Surface and Coatings Technology, 2017, 328, 304.
56 Cao C C, Li W Y, Yang K, et al. Materials Reports, 2019, 33(1), 277 (in Chinese).
曹聪聪, 李文亚, 杨康, 等. 材料导报, 2019, 33(1), 277.
57 Vidaller M V, List A, Gaertner F, et al. Journal of Thermal Spray Technology, 2015, 24, 644.
58 Yang K, Li W Y, Yang X W, et al. Surface and Coating Technology, 2018, 350, 519.
59 Chen C Y, Xie Y C, Liu L T, et al. Journal of Materials Science and Technology, 2021, 72, 39.
60 Huang R Z, Sone M, Ma W H, et al. Surface and Coating Technology, 2015, 261, 278.
61 Kang N, Verdy C, Coddet P, et al. Surface and Coatings Technology, 2017, 318, 355.
62 Chen C Y, Xie Y C, Yan X C, et al. Additive Manufacturing, 2019, 27, 595.
63 Tariq N H, Gyansah L, Qiu X, et al. Materials and Design, 2018, 156, 287.
64 Li W Y, Wu D, Hu K W, et al. Surface and Coatings Technology, 2021, 409, 126887.
65 Huang C J, Yan X C, Li W Y, et al. Applied Surface Science, 2018, 451, 56.
66 Sun W, Bhowmik A, Tan A W, et al. Journal of Alloys and Compounds, 2019, 797, 1268.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[7] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[8] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[9] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[10] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[11] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[12] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[13] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[14] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[15] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed