Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 23010114-6    https://doi.org/10.11896/cldb.23010114
  高分子与聚合物基复合材料 |
聚氯乙烯/热塑性聚氨酯共混合金的静动态力学性能及微观结构分析
雷经发1,2, 沈强1, 刘涛1,2,3,*, 孙虹1,2, 尹志强1
1 安徽建筑大学机械与电气工程学院,合肥 230601
2 工程机械智能制造安徽省教育厅重点实验室,合肥 230601
3 灾害环境人员安全安徽省重点实验室,合肥 230601
Static and Dynamic Mechanical Properties and Microstructure Analysis of Polyvinyl Chloride/Thermoplastic Polyurethane Blended Alloy
LEI Jingfa1,2, SHEN Qiang1, LIU Tao1,2,3,*, SUN Hong1,2, YIN Zhiqiang1
1 School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei 230601, China
2 Anhui Key Laboratory of Intelligent Manufacturing of Construction Machinery, Hefei 230601, China
3 Anhui Province Key Laboratory of Human Safety, Hefei 230601, China
下载:  全 文 ( PDF ) ( 8965KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了揭示聚氯乙烯(PVC)/热塑性聚氨酯(TPU)共混合金的静动态力学性能以及微观结构对共混体系力学性能的影响,采用万能材料试验机和分离式霍普金森压杆(SHPB)实验装置对PVC/TPU合金开展准静态、动态力学性能实验,获取了较宽应变率范围(0.001~5 800 s-1)内的应力-应变曲线,并通过傅里叶变换红外光谱(FTIR)及扫描电镜(SEM)对PVC/TPU合金微观结构进行表征。结果表明,材料在准静态拉伸及动态压缩下均具有显著的应变率强化效应。共混比会影响其微观结构及力学性能,共混比为90/10(PVC/TPU)时,材料弹性模量、峰值应力及断裂伸长率最高,且两相相容性最好;随着TPU占比增加,材料的拉伸与压缩力学性能下降,两相之间出现明显的界面层;此外,共混比为50/50时,材料相结构较为复杂,出现双连续相与“海-岛”结构共存的复杂形貌。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
雷经发
沈强
刘涛
孙虹
尹志强
关键词:  共混合金  力学性能  应变率  微观形貌    
Abstract: To reveal the static and dynamic mechanical properties of polyvinyl chloride (PVC)/thermoplastic polyurethane (TPU) blended alloy and the effect of microstructure on the mechanical properties of the blend system, quasi-static and dynamic mechanical properties experiments were conducted on PVC/TPU alloy specimens using a universal material testing machine and a split Hopkinson pressure bar (SHPB) experimental setup. The stress-strain curves in the wide strain rate range (0.001—5 800 s-1) were obtained, and the structure and properties of PVC/TPU alloy were characterized by FTIR and SEM. The results indicate that the material exhibits significant strain rate strengthening effects under quasi-static tension and dynamic compression. The blending ratio affects its microstructure and mechanical properties. When the blending ratio is 90/10 (PVC/TPU), the material has the highest elastic modulus, peak stress, and elongation at break, and the compatibility between the two phases is the best. As the proportion of TPU increases, the tensile and compressive mechanical properties of the material decrease, and a clear interface layer appears between the two phases. In addition, when the blending ratio is 50/50, the phase structure of the material is relatively complex, resulting in a complex morphology where the bicontinuous phase coexists with the ‘sea island' structure.
Key words:  blended alloy    mechanical property    strain rate    micro-morphology
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  TQ334.1  
基金资助: 合肥市自然科学基金(2024035);安徽高校自然科学研究重大项目(2023AH040036);安徽省教育厅高校优秀拔尖人才培育项目(gxbjZD2020078;gxyqZD2019057);灾害环境人员安全安徽省重点实验室开放课题(DEPS-2021-02)
通讯作者:  *刘涛,通信作者,安徽建筑大学机械与电气工程学院副教授、硕士研究生导师。2012年合肥工业大学机械电子工程专业博士毕业。目前主要从事材料动态力学性能测试、无损检测等方面的研究工作。发表论文20余篇,其中SCI收录6篇,EI收录8篇。主持国家自然科学基金、安徽省自然科学基金等科研项目6项。tao.liu@ahjzu.edu.cn   
作者简介:  雷经发,安徽建筑大学机械与电气工程学院教授、硕士研究生导师。2010年四川大学测试计量技术及仪器专业博士毕业。目前主要从事材料动态力学性能测试、机器视觉检测等方面的研究工作。发表论文30余篇,其中SCI收录8篇,EI收录10篇。主持安徽省重点研发项目、安徽省自然科学基金等省部级科研项目7项。
引用本文:    
雷经发, 沈强, 刘涛, 孙虹, 尹志强. 聚氯乙烯/热塑性聚氨酯共混合金的静动态力学性能及微观结构分析[J]. 材料导报, 2024, 38(19): 23010114-6.
LEI Jingfa, SHEN Qiang, LIU Tao, SUN Hong, YIN Zhiqiang. Static and Dynamic Mechanical Properties and Microstructure Analysis of Polyvinyl Chloride/Thermoplastic Polyurethane Blended Alloy. Materials Reports, 2024, 38(19): 23010114-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23010114  或          http://www.mater-rep.com/CN/Y2024/V38/I19/23010114
1 Ramnath B V, Kesavan A, Chinnadurai E. Materials Testing, 2020, 62(5), 544.
2 Hecht E S, Yeh G K, Zhang K. Journal of Pharmaceutical and Biomedical Analysis, 2021, 197, 113955.
3 Moiseyev Y B, Ryzhenkov S P. Bulletin of the Russian Military Medical Academy, 2018, 20(2), 150.
4 Wang H, Peng X, Liu F, et al. The Journal of Supercritical Fluids, 2022, 184, 105568.
5 Xiao H, Li K S, Ding S C. Polymer Materials Science & Engineering, 2010, 26(12), 144 (in Chinese).
肖欢, 李侃社, 丁胜春. 高分子材料科学与工程, 2010, 26(12), 144.
6 Laukaitiene A, Jankauskaite V, Žukiene K, et al. Medžiagotyra, 2013, 19(4), 397.
7 Rio G D, Rodriguez J. Materials & Design, 2012, 35, 369.
8 Xu P, Huang B, Tang R, et al. Advanced Composites and Hybrid Materials, 2022, 5(2), 991.
9 Essabir H, El Mechtali F Z, Nekhlaoui S, et al. The International Journal of Advanced Manufacturing Technology, 2020, 110, 1095.
10 Lyu Y, Pang J, Gao Z, et al. Polymer, 2019, 176, 20.
11 Kong C Z, Zhen B C, Shu X C, et al. Advanced Materials Research, 2012, 1672(476-478), 421.
12 Tan L Y, Tan Q Y, Zhang H Q, et al. Journal of Central South University (Science and Technology), 2008(5), 928 (in Chinese).
谭翎燕, 谭群燕, 张浩勤, 等. 中南大学学报(自然科学版), 2008(5), 928.
13 Techawinyutham L, Prasarnsri A, Siengchin S, et al. Journal of Composites Science, 2022, 6(1), 8.
14 Maghsoud Z, Pakbaz M, Famili M, et al. Journal of Membrane Science, 2017, 541, 271.
15 Vinodhini P A, Sangeetha K, Thandapani G, et al. International Journal of Biological Macromolecules, 2017, 104, 1721.
16 Gong Y F, Kong W K, Meng G R, et al. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(2), 401 (in Chinese).
宫亚峰, 孔维康, 孟广锐, 等. 吉林大学学报(工学版), 2019, 49(2), 401.
17 Liao H Y, Tao G L. Polymer Materials Science & Engineering, 2013, 29(7), 72 (in Chinese).
廖华勇, 陶国良. 高分子材料科学与工程, 2013, 29(7), 72.
18 Kaliyathan A V, Rane A V, Huskic M, et al. Composites Science and Technology, 2020, 200, 108484.
19 Bai J, Wang J, Wang W, et al. ACS Sustainable Chemistry & Engineering, 2016, 4(1), 273.
20 Meng Y G, Huo R T, Qi C Z, et al. Materials Science Forum, 2011, 687, 617.
21 Shahi P, Behravesh A H, Rasel S, et al. Cellular Polymers, 2017, 36(5), 221.
22 Sun X, Mo G, Zhao L Z, et al. Acta Physica Sinica, 2017, 66(17), 111 (in Chinese).
孙星, 默广, 赵林志, 等. 物理学报, 2017, 66(17), 111.
23 Xu G M, Xue B, Wei L Q, et al. Acta Materiae Compositae Sinica, 2018, 35(7), 1822 (in Chinese).
徐国敏, 薛斌, 韦良强, 等. 复合材料学报, 2018, 35(7), 1822.
[1] 朱永强, 冯孟, 赵亓新, 王寒冰, 杨玉龙, 齐建涛, 丛巍巍. 基于拉曼光谱的含铜自抛光防污涂料的性能研究[J]. 材料导报, 2024, 38(9): 22110241-5.
[2] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[3] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[4] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[5] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[6] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[7] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[8] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[9] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[10] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[11] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[12] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[13] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[14] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[15] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed