Irradiation Tolerance of Cu Nanograins on a Carbon Nanotube Scaffold
MAO Pengyan1,*, ZHAO Hui1, LI Hongda2, TAI Kaiping3,4,*
1 School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China 2 School of Equipment Engineering, Shenyang Ligong University, Shenyang 110159, China 3 Shenyang National Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 4 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Abstract: Carbon nanotube (CNT)-copper (Cu) hybrid deposited by magnetron sputtering technique is a novel nano-porous material, and the CNT-Cu hybrid could be attractive for use in future nuclear reactors by sticking on the structural components. In this work, CNT-Cu hybrids differed in thickness were prepared by means of magnetron sputtering. Combined with the dehydrogenation effect of He ions irradiation on organic vapor of paraffin-based mineral oil at room temperature, carbon layer was coated on the CNT-Cu hybrid. The irradiation tolerance of the hybrid with and without carbon layers are carefully investigated. We found that with irradiation dose and irradiation temperature increasing, voids gradually appear, and the size and density of voids is small, which is related to the high grain boundary volume fraction, specific surface area and low diffusion rate of irradiation-induced defects. The growth in grain size of the CNT-Cu hybrid is much lower than that of the Cu films deposited on the Si/SiO2 substrate, which is derived from the inhibition of grain boundary migration along the perpendicular to the CNT axial direction. The CNT-Cu hybrid after carbon coating exhibits significantly enhanced thermal structural stability and irradiation tolerance, owing to the high grain boundary volume fraction, specific surface area and stable nano-grains.
通讯作者: *毛鹏燕,通信作者,沈阳理工大学材料科学与工程学院副教授。2015年6月武汉理工大学材料科学与工程专业本科毕业,2021年6月中国科学技术大学材料科学与工程学院材料学专业(硕博连读)博士毕业,2021年8月到沈阳理工大学工作至今。目前主要从事纳米结构金属材料的抗辐照损伤性能研究、金属结构强韧化机制研究等方面的工作。在Journal of Nuclear Materials、Carbon、Vacuum等国际知名学术期刊发表论文多篇。 邰凯平,通信作者,中国科学院金属研究所沈阳材料科学国家研究中心研究员。2004年7月中南大学材料科学与工程系本科毕业,2009年7月清华大学材料科学与工程系博士毕业后到美国伊利诺伊大学香槟分校从事博士后研究,2014年2月回国到中国科学院金属研究所工作至今。目前主要研究方向为高性能热电材料微观结构设计、制备及其热、电和力学性能,晶界/界面改性调控纳米结构功能材料,原位透射电子显微镜技术开发与应用,新型柔性热电薄膜及器件,高性能微型热电器件研发与产业化应用。在Nature Materials、Acta Materials等国际知名学术期刊发表论文70余篇。maopengyan1993@163.com;kptai@imr.ac.cn
引用本文:
毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
MAO Pengyan, ZHAO Hui, LI Hongda, TAI Kaiping. Irradiation Tolerance of Cu Nanograins on a Carbon Nanotube Scaffold. Materials Reports, 2024, 38(19): 22120135-6.
1 Beyerlein I J, Caro A, Demkowicz M J, et al. Materials Today, 2013, 16, 443. 2 Zinkle S J, Was G S. Acta Materialia, 2013, 61, 735. 3 Hu Z Y, Chen H Q, Zhao Y B, et al. Journal of Alloys and Compounds, 2020, 843, 155829. 4 Krawczyńska A T, Ciupiński Ŀ, Gloc M, et al. Materials Characterization, 2022, 191, 112151. 5 Swaminathan N, Morgan D, Szlufarska I. Physical Review B, 2012, 86, 214110. 6 Diao S Z, Zhao Q, Wang S L, et al. Materials Characterization, 2022, 184, 111699. 7 Li J, Fan C, Li Q, et al. Acta Materialia, 2018, 143, 30. 8 Han W, Fu E G, Demkowicz M J, et al. Journal of Materials Research, 2013, 28, 2763. 9 Shen T D, Feng S, Tang M, et al. Applied Physics Letters, 2007, 90, 263115. 10 Demkowicz M J, Hoagland R G, Hirth J P. Physical Review Letters, 2008, 100, 136102. 11 Demkowicz M J, Thilly L. Acta Materialia, 2011, 59, 7744. 12 Li J, Fan C, Ding J, et al. Scientific Reports, 2017, 7, 39484. 13 Li J, Chen Y, Wang H, et al. Scripta Materialia, 2018, 144, 13. 14 Bringa E M, Monk J D, Caro A, et al. Nano Letters, 2012, 12, 3351. 15 Sun C, Bufford D, Chen Y, et al. Scientific Reports, 2014, 4, 3737. 16 Zhang C G, Li Y G, Zhou W H, et al. Journal of Nuclear Materials, 2015, 466, 328. 17 Krishnan A, Dujardin E, Ebbesen T W, et al. Physical Review B, 1998, 58, 14013. 18 Jiang S, Hou P X, Chen M L, et al. Science Advances, 2018, 4, eaap9264. 19 Mao P, Qiao J, Zhao Y, et al. Carbon, 2021, 172, 712. 20 Wu Y, Yang P. Applied Physics Letters, 2000, 77, 43. 21 Toimil M M E, Balogh A G, Cornelius T W, et al. Applied Physics Letters, 2004, 85, 5337. 22 Rayleigh L. Proceedings of the London Mathematical Society, 1878, s1-10, 4. 23 Nichols F A. Journal of Materials Science, 1976, 11, 1077. 24 Karim S, Toimil-Molares M E, Balogh A G, et al. Nanotechnology, 2006, 17, 5954. 25 Klinger L, Rabkin E. Zeitschrift für Metallkunde, 2005, 96, 1119. 26 Petersen J, Mayr S G. Journal of Applied Physics, 2008, 103, 023520. 27 Abram T, Ion S. Energy Policy, 2008, 36, 4323. 28 You G F, Gong H, Thong J T. Nanotechnology, 2010, 21, 195701. 29 Mullins W W. Journal of Applied Physics, 1957, 28, 333. 30 Mao P, Cui J, Chen Y, et al. Journal of Nuclear Materials, 2019, 526, 151741.