Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 22120135-6    https://doi.org/10.11896/cldb.22120135
  金属与金属基复合材料 |
碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究
毛鹏燕1,*, 赵晖1, 李宏达2, 邰凯平3,4,*
1 沈阳理工大学材料科学与工程学院,沈阳 110159
2 沈阳理工大学装备工程学院,沈阳 110159
3 中国科学院金属研究所沈阳材料科学国家研究中心,沈阳 110016
4 中国科学技术大学材料科学与工程学院,沈阳 110016
Irradiation Tolerance of Cu Nanograins on a Carbon Nanotube Scaffold
MAO Pengyan1,*, ZHAO Hui1, LI Hongda2, TAI Kaiping3,4,*
1 School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
2 School of Equipment Engineering, Shenyang Ligong University, Shenyang 110159, China
3 Shenyang National Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
下载:  全 文 ( PDF ) ( 12580KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用磁控溅射沉积技术获得的碳纳米管-金属复合材料是一种新型的纳米多孔材料,涂覆碳纳米管-金属复合材料的结构组件在新型核反应堆中具有广阔的应用前景。但是目前的报道中对碳纳米管-金属复合材料抗辐照损伤性能的研究还很少。因此,本工作通过磁控溅射沉积技术,制备了两种不同厚度的碳纳米管-铜复合薄膜,结合室温下的He离子辐照对石蜡基矿物油有机蒸汽的脱氢效应在复合薄膜表面包覆碳层,研究了碳层包覆前后碳纳米管-铜复合薄膜的抗辐照损伤性能。结果表明,随着辐照剂量和辐照温度升高,样品内逐渐产生孔洞等缺陷,且孔洞尺寸较小,这与碳纳米管-铜复合薄膜较高的晶界体积分数和比表面积以及降低的缺陷迁移速率有关。与平面基底上沉积的铜薄膜相比,复合薄膜在室温和高温辐照后,晶粒尺寸明显减小,这与一维碳纳米管基底可显著限制碳纳米管轴向垂直方向上的晶界迁移有关。碳层包覆后的碳纳米管-铜复合薄膜的高温结构稳定性和抗辐照损伤性能明显增强,这得益于碳包覆碳纳米管-铜复合薄膜较高的晶界体积分数和比表面积以及稳定的纳米晶粒。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毛鹏燕
赵晖
李宏达
邰凯平
关键词:  铜纳米晶  碳纳米管  碳包覆层  抗辐照损伤性能  高温结构稳定性    
Abstract: Carbon nanotube (CNT)-copper (Cu) hybrid deposited by magnetron sputtering technique is a novel nano-porous material, and the CNT-Cu hybrid could be attractive for use in future nuclear reactors by sticking on the structural components. In this work, CNT-Cu hybrids differed in thickness were prepared by means of magnetron sputtering. Combined with the dehydrogenation effect of He ions irradiation on organic vapor of paraffin-based mineral oil at room temperature, carbon layer was coated on the CNT-Cu hybrid. The irradiation tolerance of the hybrid with and without carbon layers are carefully investigated. We found that with irradiation dose and irradiation temperature increasing, voids gradually appear, and the size and density of voids is small, which is related to the high grain boundary volume fraction, specific surface area and low diffusion rate of irradiation-induced defects. The growth in grain size of the CNT-Cu hybrid is much lower than that of the Cu films deposited on the Si/SiO2 substrate, which is derived from the inhibition of grain boundary migration along the perpendicular to the CNT axial direction. The CNT-Cu hybrid after carbon coating exhibits significantly enhanced thermal structural stability and irradiation tolerance, owing to the high grain boundary volume fraction, specific surface area and stable nano-grains.
Key words:  Cu nanograins    carbon nanotube    carbon coated layer    irradiation tolerance    thermal structural stability
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  O77+4  
基金资助: 沈阳理工大学博士后启动基金;辽宁省科技厅博士科研启动基金计划项目(2022-BS-184);沈阳理工大学引进高层次人才科研支持经费(1010147001266);辽宁省教育厅基本科研项目(青年)(JYTQN2023052);辽宁省属本科高校基本科研业务费专项资金(SYLUGXRC23)
通讯作者:  *毛鹏燕,通信作者,沈阳理工大学材料科学与工程学院副教授。2015年6月武汉理工大学材料科学与工程专业本科毕业,2021年6月中国科学技术大学材料科学与工程学院材料学专业(硕博连读)博士毕业,2021年8月到沈阳理工大学工作至今。目前主要从事纳米结构金属材料的抗辐照损伤性能研究、金属结构强韧化机制研究等方面的工作。在Journal of Nuclear Materials、Carbon、Vacuum等国际知名学术期刊发表论文多篇。
邰凯平,通信作者,中国科学院金属研究所沈阳材料科学国家研究中心研究员。2004年7月中南大学材料科学与工程系本科毕业,2009年7月清华大学材料科学与工程系博士毕业后到美国伊利诺伊大学香槟分校从事博士后研究,2014年2月回国到中国科学院金属研究所工作至今。目前主要研究方向为高性能热电材料微观结构设计、制备及其热、电和力学性能,晶界/界面改性调控纳米结构功能材料,原位透射电子显微镜技术开发与应用,新型柔性热电薄膜及器件,高性能微型热电器件研发与产业化应用。在Nature Materials、Acta Materials等国际知名学术期刊发表论文70余篇。maopengyan1993@163.com;kptai@imr.ac.cn   
引用本文:    
毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
MAO Pengyan, ZHAO Hui, LI Hongda, TAI Kaiping. Irradiation Tolerance of Cu Nanograins on a Carbon Nanotube Scaffold. Materials Reports, 2024, 38(19): 22120135-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120135  或          http://www.mater-rep.com/CN/Y2024/V38/I19/22120135
1 Beyerlein I J, Caro A, Demkowicz M J, et al. Materials Today, 2013, 16, 443.
2 Zinkle S J, Was G S. Acta Materialia, 2013, 61, 735.
3 Hu Z Y, Chen H Q, Zhao Y B, et al. Journal of Alloys and Compounds, 2020, 843, 155829.
4 Krawczyńska A T, Ciupiński Ŀ, Gloc M, et al. Materials Characterization, 2022, 191, 112151.
5 Swaminathan N, Morgan D, Szlufarska I. Physical Review B, 2012, 86, 214110.
6 Diao S Z, Zhao Q, Wang S L, et al. Materials Characterization, 2022, 184, 111699.
7 Li J, Fan C, Li Q, et al. Acta Materialia, 2018, 143, 30.
8 Han W, Fu E G, Demkowicz M J, et al. Journal of Materials Research, 2013, 28, 2763.
9 Shen T D, Feng S, Tang M, et al. Applied Physics Letters, 2007, 90, 263115.
10 Demkowicz M J, Hoagland R G, Hirth J P. Physical Review Letters, 2008, 100, 136102.
11 Demkowicz M J, Thilly L. Acta Materialia, 2011, 59, 7744.
12 Li J, Fan C, Ding J, et al. Scientific Reports, 2017, 7, 39484.
13 Li J, Chen Y, Wang H, et al. Scripta Materialia, 2018, 144, 13.
14 Bringa E M, Monk J D, Caro A, et al. Nano Letters, 2012, 12, 3351.
15 Sun C, Bufford D, Chen Y, et al. Scientific Reports, 2014, 4, 3737.
16 Zhang C G, Li Y G, Zhou W H, et al. Journal of Nuclear Materials, 2015, 466, 328.
17 Krishnan A, Dujardin E, Ebbesen T W, et al. Physical Review B, 1998, 58, 14013.
18 Jiang S, Hou P X, Chen M L, et al. Science Advances, 2018, 4, eaap9264.
19 Mao P, Qiao J, Zhao Y, et al. Carbon, 2021, 172, 712.
20 Wu Y, Yang P. Applied Physics Letters, 2000, 77, 43.
21 Toimil M M E, Balogh A G, Cornelius T W, et al. Applied Physics Letters, 2004, 85, 5337.
22 Rayleigh L. Proceedings of the London Mathematical Society, 1878, s1-10, 4.
23 Nichols F A. Journal of Materials Science, 1976, 11, 1077.
24 Karim S, Toimil-Molares M E, Balogh A G, et al. Nanotechnology, 2006, 17, 5954.
25 Klinger L, Rabkin E. Zeitschrift für Metallkunde, 2005, 96, 1119.
26 Petersen J, Mayr S G. Journal of Applied Physics, 2008, 103, 023520.
27 Abram T, Ion S. Energy Policy, 2008, 36, 4323.
28 You G F, Gong H, Thong J T. Nanotechnology, 2010, 21, 195701.
29 Mullins W W. Journal of Applied Physics, 1957, 28, 333.
30 Mao P, Cui J, Chen Y, et al. Journal of Nuclear Materials, 2019, 526, 151741.
[1] 苗青山, 杨璟, 张铁成, 李文鹏, 陕绍云, 苏红莹. 磁性多壁碳纳米管的制备及用于类芬顿反应催化降解橙黄Ⅱ[J]. 材料导报, 2024, 38(9): 22120166-7.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[4] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[5] 张永芳, 文镜茜, 董丽虹, 王海斗, 郭伟玲, 黄艳斐. 基于碳纳米管及其复合材料的柔性应变传感器研究进展[J]. 材料导报, 2024, 38(14): 23050046-11.
[6] 李少杰, 张云峰, 张玉令, 闫军, 杜仕国, 陈博. 纳米改性超高性能混凝土板在爆炸荷载下的动态响应试验研究[J]. 材料导报, 2024, 38(11): 22110130-9.
[7] 刘金涛, 崔娇伟, 周煜, 钱如胜, 孔德玉. 三维石墨烯-碳纳米管对超高性能混凝土机敏性能的影响[J]. 材料导报, 2024, 38(11): 23010135-8.
[8] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[9] 栾利强, 文双寿, 余和德, 任俊颖. 碳纳米管改性沥青混合料低温裂缝扩展分析[J]. 材料导报, 2023, 37(20): 22030145-7.
[10] 陈点, 吕仕铭, 汪羽翎. 非共价键化学修饰碳纳米管的分散及其机理[J]. 材料导报, 2023, 37(17): 22040300-18.
[11] 夏伟, 陆松, 白二雷, 许金余, 杜宇航, 姚廒. 碳纳米管-碳纤维复合改性混凝土力学性能研究[J]. 材料导报, 2023, 37(16): 22010125-9.
[12] 朱建平, 张素娟, 高飞, 张文艳. CNTs@SiO2核壳结构纳米线对水泥力学性能及微观结构的影响[J]. 材料导报, 2023, 37(16): 22010225-6.
[13] 刘忠柱, 赵伟, 潘玮, 李睢水, 郑国强, 李倩. 多壁碳纳米管改性等规聚丙烯复合材料的结构及性能研究[J]. 材料导报, 2023, 37(1): 20100004-6.
[14] 卢学峰, 王宽, 崔志红. 掺杂(硅、锗、锡)单壁碳纳米管的第一性原理研究[J]. 材料导报, 2022, 36(9): 20120188-5.
[15] 王朕, 顾洋, 吴宏坤, 李雪, 曾晓苑. 基于氮掺杂碳纳米管负载超细Ir纳米颗粒的高性能Li-CO2电池[J]. 材料导报, 2022, 36(8): 20120062-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed