Research on Mechanical Properties of Carbon Nanotubes-Carbon Fiber Composite Modified Concrete
XIA Wei1, LU Song1,*, BAI Erlei1, XU Jinyu1,2, DU Yuhang1, YAO Ao1
1 Aviation Engineering School, Air Force Engineering University, Xi'an 710038, China 2 School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China
Abstract: Carbon nanotubes-carbon fiber composite reinforcement (CNTs-CF) is a new fiber material assembled by grafting carbon nanotubes (CNTs) on the surface of carbon fiber (CF). The idea of the cross-scale modification of concrete by CNTs-CF was proposed. Five kinds of carbon nanotubes-carbon fiber composite modified concrete (CCMC) with different volume content of CNTs-CF (0%, 0.1%, 0.2%, 0.3% and 0.4%) were prepared. The compressive strength, flexural strength, flexure compression ratio (the ratio of flexural strength to compressive strength), and failure mode of CCMC were tested, and then, according to the scanning electron microscope (SEM) images, the enhancement mechanism of CNTs-CF on the basic mechanical properties of concrete was analyzed. The results show that the addition of proper content of CNTs-CF in concrete is beneficial to the improvement of compressive strength and flexural strength, and the volume content of CNTs-CF in the concrete matrix has a relatively optimal value. Compared with the plain concrete without CNTs-CF, when the volume content of CNTs-CF is 0.3%, the compressive strength of CCMC increases by 8.79%, and the flexural strength increases by 27.76%. In the range of fiber content in this test, the flexure compression ratio of CCMC shows an increasing trend with the increase of CNTs-CF volume content, with an increase rate of 8.47%—19.16%. The addition of CNTs-CF can weaken the brittle failure characteristics of concrete. Moreover, when the concrete fails under load, it can still maintain a certain degree of integrity, which is damaged but not scattered and cracked. The surface roughness and specific surface area of CNTs-CF are significantly increased, which makes it show more superior strengthening and toughening effect than the original CF. CNTs and CF, which constitute CNTs-CF, can give full play to their modification advantages at the nano and micro levels respectively. At the same time, CNTs and CF can cooperate and complement each other, so as to improve the microstructure of concrete and effectively strengthen its mechanical properties.
通讯作者: *陆松,空军工程大学航空工程学院讲师,分别于2012年6月、2014年12月在空军工程大学获得工学学士学位和硕士学位,后于2018年6月获得空军工程大学管理科学与工程学科博士学位,留校任教至今。目前主要从事机场防护结构材料的制备技术、冲击特性及界面增强机制等方面的研究工作。发表论文10余篇,包括Construction and Building Materials、Journal of Materials in Civil Engineering、RSC Advances等。lusong647@163.com
1 Alaskar A, Alabduljabbar H, Mohamed A M, et al. Construction and Building Materials, 2021, 282, 122681. 2 Silvestre J, Silvestre N, Brito J D. European Journal of Environmental and Civil Engineering, 2015, 20, 455. 3 Deng Z C. Acta Materiae Compositae Sinica, 2016, 33(6), 1274 (in Chinese). 邓宗才. 复合材料学报, 2016, 33(6), 1274. 4 Raheem A, Mahdy M, Mashaly A A. Construction and Building Mate-rials, 2019, 213, 561. 5 Lu Z Y, Hou D S, Ma H Y, et al. Construction and Building Materials, 2016, 119, 107. 6 Peng G F, Niu X J, Shang Y J, et al. Cement and Concrete Research, 2018, 109, 147. 7 Gao D Y, Li H. China Civil Engineering Journal, 2015, 48(10), 10 (in Chinese). 高丹盈, 李晗. 土木工程学报, 2015, 48(10), 10. 8 Gao D Y, Zhao L P, Chen G. China Civil Engineering Journal, 2017, 50(9), 46 (in Chinese). 高丹盈, 赵亮平, 陈刚. 土木工程学报, 2017, 50(9), 46. 9 Xu J Y, Zhao D H, Fan F L. Dynamic characteristics of fiber reinforced concrete, Northwest University of Technology Press, China, 2013 (in Chinese). 许金余, 赵德辉, 范飞林. 纤维混凝土的动力特性, 西北工业大学出版社, 2013. 10 Niu X J, Peng G F, He J, et al. Journal of Building Materials, 2020, 23(1), 216 (in Chinese). 牛旭婧, 朋改非, 何杰, 等. 建筑材料学报, 2020, 23(1), 216. 11 Cui X, Han B G, Zheng Q F, et al. Composites Part A, Applied Science and Manufacturing, 2017, 103(10), 131. 12 Karger-Kocsis J, Mahmood H, Pegoretti A. Composites Science and Technology, 2020, 186(15), 107932. 13 Li W, Cheng X H. Acta Materiae Compositae Sinica, 2020, 37(11), 2789 (in Chinese). 李玮, 程先华. 复合材料学报, 2020, 37(11), 2789. 14 Zheng L B, Wang Y X, Chen J Q, et al. Acta Materiae Compositae Sinica, 2017, 34(11), 2428 (in Chinese). 郑林宝, 王延相, 陈纪强, 等. 复合材料学报, 2017, 34(11), 2428. 15 Wang C. Interfacial enhancement mechanisms of carbon nanotube/carbon fiber multi-scale composites. Ph.D. Thesis, Harbin Institute of Technology, China, 2013 (in Chinese). 王超. 碳纳米管/碳纤维多尺度复合材料界面增强机理研究. 博士学位论文, 哈尔滨工业大学, 2013. 16 Guo J H, Lu C X, An F, et al. Materials Letters, 2012, 66(1), 382. 17 Thostenson E T, Li W Z, Wang D Z, et al. Journal of Applied Physics, 2002, 91(9), 6034. 18 Li L, Li Z L, Gao D Y, et al. Acta Materiae Compositae Sinica, 2021, 38(7), 2326 (in Chinese). 李黎, 李宗利, 高丹盈, 等. 复合材料学报, 2021, 38(7), 2326. 19 Li L, Tao J C, Cao M L, et al. Acta Materiae Compositae Sinica, 2022, 39 (in Chinese). 李黎, 陶佳诚, 曹明莉, 等. 复合材料学报, 2022, 39. 20 Zhang W H, Zhang Z X, Liu P Y, et al. Journal of the Chinese Ceramic Society, 2020, 48(8), 1155 (in Chinese). 张文华, 张仔祥, 刘鹏宇, 等. 硅酸盐学报, 2020, 48(8), 1155. 21 Cao M L, Li L, Yin H, et al. Fire Technology, 2019, 55(6), 1983. 22 Chang S, Xu J Y, Yang N. Journal of Functional Materials, 2019, 50(11), 11161 (in Chinese). 常森, 许金余, 杨宁. 功能材料, 2019, 50(11), 11161. 23 Sui K Q, Zhang Q B, Liu L. Materials Science and Technology, 2015, 23(1), 45 (in Chinese). 眭凯强, 张庆波, 刘丽. 材料科学与工艺, 2015, 23(1), 45. 24 Wang T J, Xu J Y, Meng B X, et al. Construction and Building Mate-rials, 2020, 250, 118891. 25 Zhang Y W, Yan L H, Liang Q H, et al. Advanced Engineering Sciences, 2017, 49(S2), 257 (in Chinese). 张玉武, 晏麓晖, 梁乔恒, 等. 工程科学与技术, 2017, 49(S2), 257. 26 Máca P, Sovják R, Konvalinka P. International Journal of Impact Engineering, 2014, 63, 158. 27 Liu J W, Wang C, Xiong G Q. Materials Reports, 2020, 34(8), 8090 (in Chinese). 刘家文, 王冲, 熊光启. 材料导报, 2020, 34(8), 8090. 28 Zhang C, Cao M L. Acta Materiae Compositae Sinica, 2014, 31(3), 661 (in Chinese). 张聪, 曹明莉. 复合材料学报, 2014, 31(3), 661. 29 Zhang Q, Gong S S, Zhao Y S, et al. Journal of Civil and Environmental Engineering, 2021, 43(2), 123 (in Chinese). 张勤, 巩稣稣, 赵永胜, 等. 土木与环境工程学报(中英文), 2021, 43(2), 123. 30 Xia W, Xu J Y, Nie L X, et al. Materials Reports, 2021, 35(22), 22063 (in Chinese). 夏伟, 许金余, 聂良学, 等. 材料导报, 2021, 35(22), 22063. 31 Niu D T, He J Q, Fu Q, et al. Journal of the Chinese Ceramic Society, 2020, 48(5), 705 (in Chinese). 牛荻涛, 何嘉琦, 傅强, 等. 硅酸盐学报, 2020, 48(5), 705.