Please wait a minute...
材料导报  2023, Vol. 37 Issue (16): 22010125-9    https://doi.org/10.11896/cldb.22010125
  无机非金属及其复合材料 |
碳纳米管-碳纤维复合改性混凝土力学性能研究
夏伟1, 陆松1,*, 白二雷1, 许金余1,2, 杜宇航1, 姚廒1
1 空军工程大学航空工程学院,西安 710038
2 西北工业大学力学与土木建筑学院,西安 710072
Research on Mechanical Properties of Carbon Nanotubes-Carbon Fiber Composite Modified Concrete
XIA Wei1, LU Song1,*, BAI Erlei1, XU Jinyu1,2, DU Yuhang1, YAO Ao1
1 Aviation Engineering School, Air Force Engineering University, Xi'an 710038, China
2 School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China
下载:  全 文 ( PDF ) ( 8564KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳纳米管-碳纤维复合增强体(CNTs-CF)是一种在碳纤维(CF)表面引入碳纳米管(CNTs)构筑而成的新型纤维材料。按照利用CNTs-CF作为跨尺度增强组分对混凝土进行改性的思路,制备出五种CNTs-CF体积掺量(0%、0.1%、0.2%、0.3%和0.4%)的碳纳米管-碳纤维复合改性混凝土(CCMC),测试了CCMC的抗压强度、抗折强度、折压比(抗折强度与抗压强度的比值)及破坏形态等性能指标,进而结合扫描电镜(SEM)图像,分析了CNTs-CF对混凝土基本力学性能的增效机理。结果表明:掺加适量的CNTs-CF有利于混凝土抗压强度和抗折强度的提升,并且CNTs-CF在混凝土基体中的体积掺量存在相对最佳值。与未配置CNTs-CF的普通混凝土相比,当CNTs-CF体积掺量为0.3%时,CCMC的抗压强度提高了8.79%,抗折强度提高了27.76%。在本试验的纤维掺量范围内,CCMC的折压比随CNTs-CF体积掺量的增加呈现出递增趋势,提高幅度为8.47%~19.16%。掺入CNTs-CF后,混凝土的脆性破坏特征有所减弱,在受荷失效时,其仍可保持较好的完整性,坏而不散、裂而不断。CNTs-CF的表面粗糙程度和比表面积显著增大,较CF表现出更加优越的强韧化效应,构成CNTs-CF的CNTs和CF可分别在纳米、微米层级上发挥各自的改性优势,同时又可相互协同、互为补充,改善混凝土材料的微观结构,从而对其力学性能进行有效强化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏伟
陆松
白二雷
许金余
杜宇航
姚廒
关键词:  碳纳米管-碳纤维复合增强体(CNTs-CF)  改性混凝土  力学性能  跨尺度  协同增强效应    
Abstract: Carbon nanotubes-carbon fiber composite reinforcement (CNTs-CF) is a new fiber material assembled by grafting carbon nanotubes (CNTs) on the surface of carbon fiber (CF). The idea of the cross-scale modification of concrete by CNTs-CF was proposed. Five kinds of carbon nanotubes-carbon fiber composite modified concrete (CCMC) with different volume content of CNTs-CF (0%, 0.1%, 0.2%, 0.3% and 0.4%) were prepared. The compressive strength, flexural strength, flexure compression ratio (the ratio of flexural strength to compressive strength), and failure mode of CCMC were tested, and then, according to the scanning electron microscope (SEM) images, the enhancement mechanism of CNTs-CF on the basic mechanical properties of concrete was analyzed. The results show that the addition of proper content of CNTs-CF in concrete is beneficial to the improvement of compressive strength and flexural strength, and the volume content of CNTs-CF in the concrete matrix has a relatively optimal value. Compared with the plain concrete without CNTs-CF, when the volume content of CNTs-CF is 0.3%, the compressive strength of CCMC increases by 8.79%, and the flexural strength increases by 27.76%. In the range of fiber content in this test, the flexure compression ratio of CCMC shows an increasing trend with the increase of CNTs-CF volume content, with an increase rate of 8.47%—19.16%. The addition of CNTs-CF can weaken the brittle failure characteristics of concrete. Moreover, when the concrete fails under load, it can still maintain a certain degree of integrity, which is damaged but not scattered and cracked. The surface roughness and specific surface area of CNTs-CF are significantly increased, which makes it show more superior strengthening and toughening effect than the original CF. CNTs and CF, which constitute CNTs-CF, can give full play to their modification advantages at the nano and micro levels respectively. At the same time, CNTs and CF can cooperate and complement each other, so as to improve the microstructure of concrete and effectively strengthen its mechanical properties.
Key words:  carbon nanotubes-carbon fiber composite reinforcement (CNTs-CF)    modified concrete    mechanical property    cross-scale    synergistic enhancement effect
出版日期:  2023-08-25      发布日期:  2023-08-14
ZTFLH:  TU528.572  
基金资助: 国家自然科学基金(51908548);陕西省高校科协青年人才托举计划(20200415)
通讯作者:  *陆松,空军工程大学航空工程学院讲师,分别于2012年6月、2014年12月在空军工程大学获得工学学士学位和硕士学位,后于2018年6月获得空军工程大学管理科学与工程学科博士学位,留校任教至今。目前主要从事机场防护结构材料的制备技术、冲击特性及界面增强机制等方面的研究工作。发表论文10余篇,包括Construction and Building Materials、Journal of Materials in Civil Engineering、RSC Advances等。lusong647@163.com   
作者简介:  夏伟,分别于2019年6月、2021年12月在长安大学和空军工程大学获得工学学士学位和硕士学位。现为空军工程大学航空工程学院博士研究生,主要研究领域为防护工程材料与结构。
引用本文:    
夏伟, 陆松, 白二雷, 许金余, 杜宇航, 姚廒. 碳纳米管-碳纤维复合改性混凝土力学性能研究[J]. 材料导报, 2023, 37(16): 22010125-9.
XIA Wei, LU Song, BAI Erlei, XU Jinyu, DU Yuhang, YAO Ao. Research on Mechanical Properties of Carbon Nanotubes-Carbon Fiber Composite Modified Concrete. Materials Reports, 2023, 37(16): 22010125-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010125  或          http://www.mater-rep.com/CN/Y2023/V37/I16/22010125
1 Alaskar A, Alabduljabbar H, Mohamed A M, et al. Construction and Building Materials, 2021, 282, 122681.
2 Silvestre J, Silvestre N, Brito J D. European Journal of Environmental and Civil Engineering, 2015, 20, 455.
3 Deng Z C. Acta Materiae Compositae Sinica, 2016, 33(6), 1274 (in Chinese).
邓宗才. 复合材料学报, 2016, 33(6), 1274.
4 Raheem A, Mahdy M, Mashaly A A. Construction and Building Mate-rials, 2019, 213, 561.
5 Lu Z Y, Hou D S, Ma H Y, et al. Construction and Building Materials, 2016, 119, 107.
6 Peng G F, Niu X J, Shang Y J, et al. Cement and Concrete Research, 2018, 109, 147.
7 Gao D Y, Li H. China Civil Engineering Journal, 2015, 48(10), 10 (in Chinese).
高丹盈, 李晗. 土木工程学报, 2015, 48(10), 10.
8 Gao D Y, Zhao L P, Chen G. China Civil Engineering Journal, 2017, 50(9), 46 (in Chinese).
高丹盈, 赵亮平, 陈刚. 土木工程学报, 2017, 50(9), 46.
9 Xu J Y, Zhao D H, Fan F L. Dynamic characteristics of fiber reinforced concrete, Northwest University of Technology Press, China, 2013 (in Chinese).
许金余, 赵德辉, 范飞林. 纤维混凝土的动力特性, 西北工业大学出版社, 2013.
10 Niu X J, Peng G F, He J, et al. Journal of Building Materials, 2020, 23(1), 216 (in Chinese).
牛旭婧, 朋改非, 何杰, 等. 建筑材料学报, 2020, 23(1), 216.
11 Cui X, Han B G, Zheng Q F, et al. Composites Part A, Applied Science and Manufacturing, 2017, 103(10), 131.
12 Karger-Kocsis J, Mahmood H, Pegoretti A. Composites Science and Technology, 2020, 186(15), 107932.
13 Li W, Cheng X H. Acta Materiae Compositae Sinica, 2020, 37(11), 2789 (in Chinese).
李玮, 程先华. 复合材料学报, 2020, 37(11), 2789.
14 Zheng L B, Wang Y X, Chen J Q, et al. Acta Materiae Compositae Sinica, 2017, 34(11), 2428 (in Chinese).
郑林宝, 王延相, 陈纪强, 等. 复合材料学报, 2017, 34(11), 2428.
15 Wang C. Interfacial enhancement mechanisms of carbon nanotube/carbon fiber multi-scale composites. Ph.D. Thesis, Harbin Institute of Technology, China, 2013 (in Chinese).
王超. 碳纳米管/碳纤维多尺度复合材料界面增强机理研究. 博士学位论文, 哈尔滨工业大学, 2013.
16 Guo J H, Lu C X, An F, et al. Materials Letters, 2012, 66(1), 382.
17 Thostenson E T, Li W Z, Wang D Z, et al. Journal of Applied Physics, 2002, 91(9), 6034.
18 Li L, Li Z L, Gao D Y, et al. Acta Materiae Compositae Sinica, 2021, 38(7), 2326 (in Chinese).
李黎, 李宗利, 高丹盈, 等. 复合材料学报, 2021, 38(7), 2326.
19 Li L, Tao J C, Cao M L, et al. Acta Materiae Compositae Sinica, 2022, 39 (in Chinese).
李黎, 陶佳诚, 曹明莉, 等. 复合材料学报, 2022, 39.
20 Zhang W H, Zhang Z X, Liu P Y, et al. Journal of the Chinese Ceramic Society, 2020, 48(8), 1155 (in Chinese).
张文华, 张仔祥, 刘鹏宇, 等. 硅酸盐学报, 2020, 48(8), 1155.
21 Cao M L, Li L, Yin H, et al. Fire Technology, 2019, 55(6), 1983.
22 Chang S, Xu J Y, Yang N. Journal of Functional Materials, 2019, 50(11), 11161 (in Chinese).
常森, 许金余, 杨宁. 功能材料, 2019, 50(11), 11161.
23 Sui K Q, Zhang Q B, Liu L. Materials Science and Technology, 2015, 23(1), 45 (in Chinese).
眭凯强, 张庆波, 刘丽. 材料科学与工艺, 2015, 23(1), 45.
24 Wang T J, Xu J Y, Meng B X, et al. Construction and Building Mate-rials, 2020, 250, 118891.
25 Zhang Y W, Yan L H, Liang Q H, et al. Advanced Engineering Sciences, 2017, 49(S2), 257 (in Chinese).
张玉武, 晏麓晖, 梁乔恒, 等. 工程科学与技术, 2017, 49(S2), 257.
26 Máca P, Sovják R, Konvalinka P. International Journal of Impact Engineering, 2014, 63, 158.
27 Liu J W, Wang C, Xiong G Q. Materials Reports, 2020, 34(8), 8090 (in Chinese).
刘家文, 王冲, 熊光启. 材料导报, 2020, 34(8), 8090.
28 Zhang C, Cao M L. Acta Materiae Compositae Sinica, 2014, 31(3), 661 (in Chinese).
张聪, 曹明莉. 复合材料学报, 2014, 31(3), 661.
29 Zhang Q, Gong S S, Zhao Y S, et al. Journal of Civil and Environmental Engineering, 2021, 43(2), 123 (in Chinese).
张勤, 巩稣稣, 赵永胜, 等. 土木与环境工程学报(中英文), 2021, 43(2), 123.
30 Xia W, Xu J Y, Nie L X, et al. Materials Reports, 2021, 35(22), 22063 (in Chinese).
夏伟, 许金余, 聂良学, 等. 材料导报, 2021, 35(22), 22063.
31 Niu D T, He J Q, Fu Q, et al. Journal of the Chinese Ceramic Society, 2020, 48(5), 705 (in Chinese).
牛荻涛, 何嘉琦, 傅强, 等. 硅酸盐学报, 2020, 48(5), 705.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[3] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[4] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[5] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[6] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[7] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[8] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[9] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[10] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[11] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[12] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[13] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[14] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[15] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed