Please wait a minute...
材料导报  2023, Vol. 37 Issue (8): 21110160-10    https://doi.org/10.11896/cldb.21110160
  高分子与聚合物基复合材料 |
基于纳米材料的微针阵列技术及其应用
刘勇, 刘哲, 高广志, 李志勇, 马凤森*
浙江工业大学药学院生物制剂与材料实验室,杭州 310014
Nanomaterial-based Microneedle Arrays Technology and Its Application: a Review
LIU Yong, LIU Zhe, GAO Guangzhi, LI Zhiyong, MA Fengsen*
Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Hangzhou 310014, China
下载:  全 文 ( PDF ) ( 6747KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,微针因具有无痛微创、安全高效等优点,受到了众多研究者的关注,已被广泛应用于透皮给药、医学美容和生物诊断等领域。但传统微针尤其是由聚合物材料直接制备的微针普遍存在机械强度较低、药物释放模式单一、生物传感性能差、可实现功能较简单等问题。由于纳米粒具有独特的机械强度、小尺寸特性以及光电效应,将纳米技术与微针巧妙结合可有效改善上述问题。本文综述了用于微针的纳米粒,包括无机(金属、无机非金属)纳米粒、有机(高分子、脂质)纳米粒和药物纳米颗粒(纳米晶体药物、病毒样颗粒),并介绍了纳米粒在增加力学性能、协同改善药物释放和免疫增强等方面的作用,讨论了该领域亟待解决的问题和展望了未来的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘勇
刘哲
高广志
李志勇
马凤森
关键词:  微针  纳米粒  力学性能  缓控释  免疫增强    
Abstract: In recent years, microneedles have received a lot of attention from researchers because of its advantages of being painless and minimally invasive, safe and efficient. Microneedles have been widely used in the fields of transdermal drug delivery, medical aesthetics and biological diagnosis. However, traditional microneedles, especially those prepared directly from polymer materials, generally have problems such as low mechanical strength, single drug release mode, poor biological sensing performance and simple functions. The clever combination of nanotechnology and microneedles can effectively improve the above problems, due to the unique nano-size, mechanical strength and photoelectric effects of nanoparticles. This paper reviews nanoparticles for microneedles, including inorganic nanoparticles (metal, inorganic non-metal), organic nanoparticles (polymer, lipid) and drug nanoparticles (nanocrystalline drugs, virus-like particles), and describes the role of nanoparticles in increasing mechanical property, synergistic improvement of drug release and immune enhancement are introduced. Finally, the urgent problems need to be solved in this field and the future research directions are discussed.
Key words:  microneedles    nanoparticles    mechanical property    controlled-release    immunological enhancement
出版日期:  2023-04-25      发布日期:  2023-04-24
ZTFLH:  R94  
基金资助: 浙江省重点科技创新团队计划资助项目(2013TD15)
通讯作者:  *马凤森,1987年在浙江大学获得工学硕士学位,现为浙江工业大学教授、博士研究生导师。从事新型透皮制剂、生物制药和生物材料方面的研究,现已发表论文48篇,申请专利45项,专著3部。merrigen@126.com   
作者简介:  刘勇,2019年毕业于烟台大学药学专业,获得理学学士学位。现为浙江工业大学药学院硕士研究生,在马凤森教授的指导下进行研究。目前主要研究领域为微针阵列技术在大分子递送中的应用。
引用本文:    
刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
LIU Yong, LIU Zhe, GAO Guangzhi, LI Zhiyong, MA Fengsen. Nanomaterial-based Microneedle Arrays Technology and Its Application: a Review. Materials Reports, 2023, 37(8): 21110160-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110160  或          http://www.mater-rep.com/CN/Y2023/V37/I8/21110160
1 He X, Sun J, Zhuang J, et al. Dose Response, 2019, 17(4), 1559325819878585.
2 Jamaledin R, Yiu C K Y, Zare E N, et al. Advanced Materials, 2020, 32(33), e2002129.
3 Abidin H E Z, Ooi P C, Tiong T Y, et al. Journal of Pharmaceutical Sciences, 2020, 109(8), 2485.
4 Ellen M C, Shane K, Vivien S, et al. Acta Biomaterialia, 2019, 86, 493.
5 Hao Y Y, Yang Y, Li Q Y, et al. Journal of Drug Targeting, 2020, 28(7-8), 811.
6 Meshkinfam F, Rizvi G. Journal of Biomechanical Engineering-Transactions of the ASME, 2021, 143(8), 081010.
7 Wang J, Wang H, Lai L Y, et al. Micromachines, 2021, 12(1), 23.
8 Yin M T, Xiao L, Liu Q C, et al. Advanced Healthcare Materials, 2019, 8(23), e1901170.
9 Wang Q L, Zhu D D, Chen Y, et al. Materials Science & Engineering C-Materials for Biological Applications, 2016, 65, 135.
10 Singh P, Carrier A, Chen Y L, et al. Journal of Controlled Release, 2019, 315, 97.
11 Skaria E, Patel B A, Flint M S, et al. Analytical Chemistry, 2019, 91(7), 4436.
12 Almazan E A, Castaneda P S, Torres R D, et al. Iranian Journal of Pharmaceutical Research, 2020, 19(1), 138.
13 Esser E S, Romanyuk A, Vassilieva E V, et al. Journal of Controlled Release, 2016, 236, 47.
14 Kapoor Y, Milewski M, Dick L, et al. Biomedical Microdevices, 2019, 22(1), 7.
15 Ruan W Y, Zhai Y H, Yu K Y, et al. International Journal of Pharmaceutics, 2018, 553(1-2), 298.
16 Yadav V, Sharma P K, Murty U S, et al. International Journal of Pharmaceutics, 2021, 605, 120815.
17 Carcamo-Martinez A, Mallon B, Dominguez-Robles J, et al. International Journal of Pharmaceutics, 2021, 599, 120455.
18 Avcil M, Akman G, Klokkers J, et al. Journal of Cosmetic Dermatology, 2021, 20(2), 605.
19 Su Y J, Mainardi V L, Wang H J, et al. ACS Nano, 2020, 14(9), 11775.
20 Migdadi E M, Courtenay A J, Tekko I A, et al. Journal of Controlled Release, 2018, 285, 142.
21 Turner J G, White L R, Estrela P, et al. Macromolecular Bioscience, 2021, 21(2), e2000307.
22 Lee B K, Yun Y H, Park K. Chemical Engineering Science, 2015, 125, 158.
23 Baskin J, Jeon J E, Lewis S J G. Journal of Neurology, 2021, 268(5), 1981.
24 Kandasamy G, Maity D. Materials Science & Engineering C-Materials for Biological Applications, 2021, 127, 112199.
25 Khan M A, Singh D, Ahmad A, et al. European Journal of Pharmaceutical Sciences, 2021, 164, 105892.
26 Wang Z, Xue L, Li M, et al. Materials Science & Engineering C-Mate-rials for Biological Applications 2021, 127, 1122.
27 Seeni R Z, Yu X, Chang H, et al. ACS Applied Materials & Interfaces, 2017, 9(24), 20340.
28 Crane J K. Immunological Investigations, 2020, 49(7), 794.
29 Gonzalez Garcia L E, MacGregor M N, Visalakshan R M, et al. Chemical Communications(Camb), 2018, 55(2), 171.
30 Singh R K, Malosse C, Davies J, et al. Nanomedicine, 2021, 32, 102321.
31 Singh P, Pandit S, Mokkapati V, et al. International Journal of Molecular Sciences, 2018, 19(7), 1979.
32 Pandey P C, Pandey G, Narayan R J. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2021, 109(1), 33.
33 Park J E, Yonet-Tanyeri N, Vander Ende E, et al. Nano Letters, 2019, 19(10), 6862.
34 Zhang Y, Wu M, Tan D, et al. Journal of Materials Chemistry B, 2021, 9(3), 648.
35 De Matteis V, Cascione M, Toma C C, et al. Nanomaterials (Basel), 2018, 8(5), 319.
36 Jeyaraj M, Gurunathan S, Qasim M, et al. Nanomaterials (Basel), 2019, 9(12), 1719.
37 Zhou J X, Tang L N, Yang F, et al. Analyst, 2017, 142(22), 4322.
38 Elahi N, Rizwan M. Artificial Organs, 2021, 45(11), 1272.
39 Prusty R K, Rathore D K, Ray B C. Advances in Colloid and Interface Science, 2017, 240, 77.
40 Yoon Y, Lee G S, Yoo K, et al. Sensors (Basel), 2013, 13(12), 16672.
41 Dhanjai, Mugo S M, Lu W. Analytical and Bioanalytical Chemistry, 2020, 412(26), 7063.
42 Pandit S, Gaska K, Kadar R, et al. Chemphyschem, 2021, 22(3), 250.
43 Chen Y, Yang Y, Xian Y, et al. ACS Applied Materials & Interfaces, 2020, 12(1), 352.
44 Liu D, Yu B, Jiang G, et al. Materials Science & Engineering C-Materials for Biological Applications, 2018, 90, 180.
45 Cai B, Xia W, Bredenberg S, et al. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 404.
46 Shen X, Pang Y, Meng Z X, et al. Materials Reports, 2020, 34(S2), 1088 (in Chinese).
申欣, 庞宇, 孟昭旭, 等.材料导报, 2020, 34(S2), 1088.
47 Zhang K, Zhou Y, Xiao C, et al. Science Advances, 2019, 5(8), eaax6946.
48 Bao Y Y, Liu Z, Liu Y, et al. Acta Pharmaceutica Sinica, 2021, 56(7), 6 (in Chinese).
包阳阳, 刘哲, 刘勇, 等.药学学报, 2021, 56(7), 6.
49 Tu J, Du G, Reza N M, et al. Pharmaceutical research, 2017, 34(8), 1693.
50 Tham H P, Xu K, Lim W Q, et al. ACS Nano, 2018, 12(12), 11936.
51 Peng W, Xu Y, Wang W R. Chinese Journal of Pharmaceuticals, 2020, 51(10), 1243 (in Chinese).
彭威, 徐旸, 王文锐.中国医药工业杂志, 2020, 51(10), 1243.
52 Yan L, Raphael A P, Zhu X, et al. Advanced Healthcare Materials, 2014, 3(4), 555.
53 Gobi R, Ravichandiran P, Babu R S, et al. Polymers (Basel), 2021, 13(12), 1962.
54 Talebian S, Foroughi J, Wade S J, et al. Advanced Materials, 2018, 30(31), e1706665.
55 Chen M, Quan G, Wen T, et al. ACS Applied Materials & Interfaces, 2020, 12(29), 32259.
56 Zhang J, Ma F S, Zhan H H, et al. Materials Reports, 2017, 31(19), 129 (in Chinese).
章捷, 马凤森, 占浩慧, 等. 材料导报, 2017, 31(19), 129.
57 Chen S X, Ma M, Xue F, et al. Journal of Controlled Release, 2020, 324, 218.
58 Shende P, Sardesai M, Gaud R S. Artificial Cells Nanomedicine and Biotechnology, 2018, 46(1), 19.
59 Shen H, Yang F, Bei J Z, et al. Chinese Polymer Bulletin, 2020(9), 1 (in Chinese).
沈红, 杨飞, 贝建中, 等.高分子通报, 2020(9), 1.
60 Hashemi M, Shamshiri A, Saeedi M, et al. Archives of Biochemistry and Biophysics, 2020, 691, 108485.
61 Angkawinitwong U, Courtenay A J, Rodgers A M, et al. ACS Applied Materials & Interfaces, 2020, 12(11), 12478.
62 Casalini T, Rossi F, Castrovinci A, et al. Frontiers in Bioengineering and Biotechnology, 2019, 7, 259.
63 Vucen S R, Vuleta G, Crean A M, et al. Journal of Pharmacy and Pharmacology, 2013, 65(10), 1451.
64 Wei Q Q, Jin J C, Zhou M, et al. Journal of Ningbo University (Natural Science & Engineering Edition), 2018, 31(4), 36 (in Chinese).
韦茜茜, 金嘉长, 周密, 等.宁波大学学报(理工版), 2018, 31(4), 36.
65 Hao Y, Chen Y, He X, et al. Bioactive Materials, 2020, 5(3), 542.
66 Saez V, Souza I D L, Mansur C R E. International Journal of Cosmetic Science, 2018, 40(2), 103.
67 Li Y, Wu Z F, Kuang W W, et al. China Journal of Chinese Materia Medica, 2020, 45(3), 523 (in Chinese).
李怡, 伍振峰, 况弯弯, 等.中国中药杂志, 2020, 45(3), 523.
68 Guo T, Cheng N, Zhao J, et al. International Journal of Pharmaceutics, 2019, 572, 118741.
69 Costa C P, Barreiro S, Moreira J N, et al. Pharmaceuticals (Basel), 2021, 14(8), 711.
70 Yue P F, Liu Y, Xie J, et al. Acta Pharmaceutica Sinica, 2018, 53(4), 529 (in Chinese).
岳鹏飞, 刘阳, 谢锦, 等.药学学报, 2018, 53(4), 529.
71 Tian Y, Peng Y F, Zhang Z W, et al. Acta Pharmaceutica Sinica, 2021, 56(7), 1902 (in Chinese).
田阳, 彭一凡, 张志伟, 等.药学学报, 2021, 56(7), 1902.
72 Tekko I A, Permana A D, Vora L, et al. European Journal of Pharmaceutical Sciences, 2020, 152, 105469.
73 Permana A D, Paredes A J, Volpe-Zanutto F, et al. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 154, 50.
74 Lin Y, Jin S, Li M. Chinese Journal of Microbiology and Immunology, 2020, 40(5), 393 (in Chinese).
凌媛, 金苏, 李敏.中华微生物学和免疫学杂志, 2020, 40(5), 393.
75 Balke I, Zeltins A. Advanced Drug Delivery Reviews, 2019, 145, 119.
76 Quan F S, Kim Y C, Song J M, et al. Clinical and Vaccine Immunology, 2013, 20(9), 1433.
77 Nakatsukasa A, Kuruma K, Okamatsu M, et al. Vaccine, 2017, 35(21), 2855.
78 Tian Z, Cheng J, Liu J, et al. Journal of Nanoscience and Nanotechnology, 2019, 19(5), 2453.
79 Li J R, Jiang X S, Liu W X, et al. Materials Reports, 2015, 29(1), 31 (in Chinese).
李景瑞, 蒋小松, 刘晚霞, 等. 材料导报, 2015, 29(1), 31.
80 Tang Y Y, Li S, Hu L Y, et al. Advanced Healthcare Materials, 2021, 10(19), e2100764.
81 Chen S S, Zhou K Q, Li X D, et al. Acta Pharmaceutica Sinica, 2021, 56(7), 1893 (in Chinese).
陈水生, 周可倩, 李晓东, 等.药学学报, 2021, 56(7), 1893.
82 McAllister D V, Wang P M, Davis S P, et al. Proceedings of the National Academy of Sciences, 2003, 100(24), 13755.
83 Kim D S, Choi J T, Kim C B, et al. Pharmaceutical Research, 2020, 37(3), 50.
84 Zhang Y X, Wang J W. Chinese Polymer Bulletin, 2021(4), 1 (in Chinese).
张雨欣, 王基伟.高分子通报, 2021(4), 1.
85 Wang C, Ye Y, Hochu G M, et al. Nano Letters, 2016, 16(4), 2334.
86 Zhang X, Chen G, Fu X, et al. Advanced Materials, 2021, 33(44), 2104932.
87 Chen M C, Lin Z W, Ling M H. ACS Nano, 2015, 10(1), 93.
88 Zhan J Y, Liu R, Zhang J J. Chinese Journal of Analytical Chemistry, 2021, 49(7), 1133 (in Chinese).
展佳愔, 刘然, 张晶晶.分析化学, 2021, 49(7), 1133.
89 Pei P, Yang F, Liu J, et al. Biomaterials Science, 2018, 6(6), 1414.
90 Wei W, Zhao F, Ma Y L, et al. Chinese Pharmaceutical Journal, 2021, 56(10), 785 (in Chinese).
魏微, 赵锋, 马银玲, 等.中国药学杂志, 2021, 56(10), 785.
91 Kennedy J, Larraneta E, McCrudden M T C, et al. Journal of Controlled Release, 2017, 265, 57.
92 Permana A D, Tekko I A, McCrudden M T C, et al. Journal of Controlled Release, 2019, 316, 34.
93 van der Burg N M D, Depelsenaire A C I, Crichton M L, et al. Journal of Controlled Release, 2019, 302, 190.
94 Zaric M, Lyubomska O, Poux C, et al. Journal of Investigative Dermato-logy, 2015, 135(2), 425.
95 Al-Zahrani S, Zaric M, McCrudden C, et al. Expert Opinion on Drug Delivery, 2012, 9(5), 541.
96 Mutyambizi K, Berger C L, Edelson R L. Cellular and Molecular Life Sciences, 2009, 66(5), 831.
97 Laurent P E, Bourhy H, Fantino M, et al. Vaccine, 2010, 28(36), 5850.
98 Pielenhofer J, Sohl J, Windbergs M, et al. Frontiers in Immunology, DOI:10.3389/fimmu.2020.00266.
99 Storni T, Kundig T M, Senti G, et al. Advanced Drug Delivery Reviews, 2005, 57(3), 333.
100 Xiang S D, Scholzen A, Minigo G, et al. Methods, 2006, 40(1), 1.
101 Mant A, Chinnery F, Elliott T, et al. Immunology, 2012, 136(2), 163.
102 Hirai T, Yoshioka Y, Takahashi H, et al. Biochemical and Biophysical Research Communications, 2012, 427(3), 553.
103 Yan S Y, Gu W Y, Xu Z P. Journal of Colloid and Interface Science, 2013, 395, 1.
104 Vallhov H, Gabrielsson S, Stromme M, et al. Nano Letters, 2007, 7(12), 3576.
105 Niikura K, Matsunaga T, Suzuki T, et al. ACS Nano, 2013, 7(5), 3926.
106 Foged C, Brodin B, Frokjaer S, et al. International Journal of Pharmacy Practice, 2005, 298(2), 315.
107 Nakanishi T, Kunisawa J, Hayashi A, et al. Journal of Controlled Release, 1999, 61(1-2), 233.
108 Yotsumoto S, Aramaki Y, Kakiuchi T, et al. Vaccine, 2004, 22(25-26), 3503.
109 Du G S, Woythe L, van der Maaden K, et al. Pharmaceutical Research, 2018, 35(10), 189.
110 Waghchaure M, Govardhane S, Shende P. Biomedical Microdevices, 2021, 23(3), 32.
111 Li Z, He Y, Deng L, et al. Journal of Materials Chemistry B, 2020, 8(2), 216.
112 Yang H W, Ye L, Guo X D, et al. Advanced Healthcare Materials, 2017, 6(1), 1600750.
113 Du G S, Hathout R M, Nasr M, et al. Journal of Controlled Release, 2017, 266, 109.
114 Zaric M, Lyubomska O, Touzelet O, et al. ACS Nano, 2013, 7(3), 2042.
115 Teymourian H, Tehrani F, Mahato K, et al. Advanced Healthcare Mate-rials, 2021, 10(17), e2002255.
116 Li Q, Zhang Y, Fan H, et al. Biosensors and Bioelectronics, 2021, 191, 113474.
117 Jin Q, Chen H J, Li X, et al. Small, 2019, 15(6), e1804298.
118 Gittard S D, Miller P R, Boehm R D, et al. Faraday Discussions, 2011, 149, 171.
119 McHugh K J, Jing L, Severt S Y, et al. Science Translational Medicine, 2019, 11(523).
120 Giovannini G, Kunc F, Piras C C, et al. RSC Advances, 2017, 7(32), 19924.
121 Giovannini G, Warncke P, Fischer D, et al. Nanotoxicology, 2018, 12(5), 407.
122 Sully R E, Garelick H, Loizidou E Z, et al. Materials Advances, 2021, 2(16), 5432.
123 Mönkäre J, Pontier M, van Kampen E E M, et al. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 129, 111.
124 Justin R, Chen B. Interface Focus, 2018, 8(3), 20170055.
[1] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[2] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[3] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[4] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[5] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[6] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[7] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[8] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[9] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[10] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[11] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[12] 郝思洁, 褚强, 李文亚, 杨夏炜, 邹阳帆. 电脉冲处理对金属材料组织、力学性能影响的研究进展[J]. 材料导报, 2023, 37(4): 21030039-9.
[13] 王彦明, 高晓红, 李萍, 王廷梅, 王齐华. 原子氧辐照对含苯并咪唑结构聚酰亚胺摩擦学性能影响研究[J]. 材料导报, 2023, 37(4): 21040187-7.
[14] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[15] 吴远东, 郑维爽, 李源遽, 都贝宁, 张兴儒, 李家龙, 于盛洋, 肖忆楠, 赖琛, 盛立远, 黄艺. 聚羟基脂肪酸酯(PHAs)基止血材料研究进展[J]. 材料导报, 2023, 37(3): 21010218-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed