Please wait a minute...
材料导报  2023, Vol. 37 Issue (7): 21090294-6    https://doi.org/10.11896/cldb.21090294
  金属与金属基复合材料 |
M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理
乔丽学1, 曹睿1,*, 车洪艳2,3, 李晌4, 王铁军2,3, 董浩2,3, 王彩芹2,3, 闫英杰1
1 兰州理工大学有色金属先进加工与再利用省部共建国家重点实验室,兰州 730050
2 中国钢研科技集团有限公司,安泰科技股份有限公司,北京 100081
3 河北省热等静压工程技术研究中心,河北 涿州 072750
4 八环科技集团股份有限公司,浙江 台州 318054
CMT Butt Welding Mechanism of M390 Martensitic Stainless Steel and 304 Austenitic Stainless Steel
QIAO Lixue1, CAO Rui1,*, CHE Hongyan2,3, LI Shang4, WANG Tiejun2,3, DONG Hao2,3, WANG Caiqin2,3, YAN Yingjie1
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 Advanced Technology & Materials Co., Ltd., China Iron & Steel Research Institute Group, Beijing 100081, China
3 Engineering and Technology Research Center of Hot Isostatic Pressing, Zhuozhou 072750, Hebei, China
4 Bahuan Technology Group Co., Ltd., Taizhou 318054, Zhejiang, China
下载:  全 文 ( PDF ) ( 28217KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以ERNi-1镍基焊丝为填充金属,通过冷金属过渡焊接技术(CMT)对粉末冶金制备的M390高碳马氏体不锈钢与304奥氏体不锈钢进行连接;采用拉伸实验、维氏显微硬度测试、SEM及EDS表征焊接接头力学性能及微观组织,统计焊缝及M390一侧不同区域的晶粒尺寸及碳化物分布情况,研究焊接接头的连接机理。研究结果表明:通过CMT对接焊成功实现M390高碳马氏体不锈钢与304奥氏体不锈钢的连接,得到无孔洞、无夹杂等缺陷的焊接接头。最佳焊接工艺参数为焊接速度4.5 mm/s、送丝速度9 m/min、焊接电流110 A、焊接电压18.1 V,对应焊接接头抗拉强度达到493 MPa、延伸率为21.8%,断裂于焊缝位置,且断裂类型为韧性断裂,其塑性远高于M390母材。焊缝组织由奥氏体组织及(Ti、Ni、Al)的碳化物组成。焊缝与M390实现良好的冶金结合,但在304熔合区有明显的熔合线。M390热影响区由于受热输入及焊接残余应力的影响,其基体中残留奥氏体被诱导发生马氏体相变,导致M390热影响区基体中碳元素过饱和,析出的碳元素不仅使得碳化物数量增加,而且促使碳化物类型由M23C6向M7C3发生转变。M390粗晶区碳化物尺寸最大,呈现出条形状形貌;M390细晶区碳化物尺寸介于M390母材与M390粗晶区之间,呈现出条形状和颗粒状两种形貌。M390高碳马氏体不锈钢一侧热影响区的晶粒尺寸明显小于采用传统熔化焊时马氏体钢热影响区的晶粒尺寸,充分体现CMT焊接对M390高碳马氏体不锈钢热影响区粗化问题的改善。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
乔丽学
曹睿
车洪艳
李晌
王铁军
董浩
王彩芹
闫英杰
关键词:  M390高碳马氏体不锈钢  CMT  微观组织  力学性能  碳化物    
Abstract: M390 powder metallurgy high carbon martensitic stainless steel and 304 austenitic stainless steel are joined by cold metal transfer (CMT) butt welding experiments with ERNi-1 nickel-based metal as filler wire. The mechanical properties and microstructure of the welded joint were characterized by tensile experiment, vickers microhardness test, scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The grain size and carbide distribution in different areas on M390 side were measured to reveal the joining mechanism of the welded joint. The results show that: M390 high carbon martensitic stainless steel and 304 austenitic stainless steel CMT butt welding joints with no holes, no inclusions and other defects could be achieved. The best welding process parameters were welding speed of 4.5 mm/s, wire feeding speed of 9 m/min, welding current of 110 A, welding voltage of 18.1 V, the corresponding tensile strength and the elongation reached 493 MPa and 21.8%, respectively. Its plasticity was much higher than M390 base metal. The fracture location appeared at the weld metal position. Ductile fracture dominated the fracture surfaces. The weld metal is composed of austenite microstructure and (Ti, Ni, Al) carbides. Metallurgical bon-ding can be achieved between weld metal and M390. An obvious fusion line appears in 304 fusion zone. Because M390 heat-affected zone is affected by heat input and welding residual stress, the residual austenite in the matrix of M390 heat-affected zone is induced to undergo a martensitic transformation, which lead to the supersaturation of carbon in the matrix of M390 heat-affected zone. The precipitated carbon not only increases the number of carbides, but also promotes the type of carbides to change from M23C6 to M7C3. The size of carbide in M390 coarse-grained heat affected zone is the largest, showing a strip shaped morphology. The size of carbide in M390 fine-grained heat affected zone is located between M390 base metal and M390 coarse-grained heat affected zone, showing two morphology of strip shape and granular shape. The grain size of M390 high-carbon martensitic stainless heat-affected zone is significantly smaller than martensitic steel heat-affected zone by traditional fusion welding, which can reflect CMT improvement on the coarsening of M390 high-carbon martensitic stainless steel heat-affected zone.
Key words:  M390 high carbon martensitic stainless steel    CMT    microstructure    mechanical property    carbide
出版日期:  2023-04-10      发布日期:  2023-04-07
ZTFLH:  TG406  
基金资助: 国家自然科学基金 (52175325;51961024;52071170)
通讯作者:  * 曹睿,兰州理工大学博士、教授、博士研究生导师。2003年、2006年在兰州理工大学分别获材料加工工程专业工学硕士学位、博士学位。2006年6月于兰州理工大学材料科学与工程学院参加工作至今。主要从事新材料、异种材料的焊接性、强韧性、腐蚀、变形、损伤及断裂行为研究等科研工作。发表SCI检索论文90余篇,发表中文核心期刊论文120余篇。caorui@lut.edu.cn   
作者简介:  乔丽学,2019年6月毕业于兰州理工大学,获得工学学士学位。现为兰州理工大学材料科学与工程学院硕士研究生,在曹睿教授的指导下进行研究。目前研究领域为异种金属连接。
引用本文:    
乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
QIAO Lixue, CAO Rui, CHE Hongyan, LI Shang, WANG Tiejun, DONG Hao, WANG Caiqin, YAN Yingjie. CMT Butt Welding Mechanism of M390 Martensitic Stainless Steel and 304 Austenitic Stainless Steel. Materials Reports, 2023, 37(7): 21090294-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090294  或          http://www.mater-rep.com/CN/Y2023/V37/I7/21090294
1 Wang T J, Yang B, Liang C, et al. Materials Reports, 2020, 34(12), 12122 (in Chinese).
王铁军, 杨博, 梁晨, 等. 材料导报, 2020, 34(12), 12122.
2 Sharifitabar M, Halvaee A. Materials and Design, 2010, 31(6), 3044.
3 Zhang P. Materials Reports, 2013, 27(Z2), 331 (in Chinese).
张平. 材料导报, 2013, 27(Z2), 331.
4 Pandia R S, Senthil K S, Kumaraswamidhas L A. Journal of Advanced Mechanical Design Systems and Manufacturing, 2015, 9(3), 0045.
5 Li F G, Lei Y C, Li T Q, et al. Materials Reports, 2020, 34(4), 4098 (in Chinese).
李福贵, 雷玉成, 李天庆, 等. 材料导报, 2020, 34(4), 4098.
6 Kumar M, Srinivasan P B. Materials Letters, 2008, 62(17-18), 2887.
7 Berretta J R, Rossi W D, Neves M D M D, et al. Optics and Lasers in Engineering, 2007, 45(9), 960.
8 Srinivasan P B, Sharkawy S W, Dietzel W. Journal of Materials Engineering and Performance, 2004, 13(2), 232.
9 Erdem M, Altu M, Karabulut M. The International Journal of Advanced Manufacturing Technology, 2016, 85, 481.
10 Baghjari S H, Akbarimousavi S. Materials and Design, 2014, 57, 128.
11 Zhang Z K, Liu X F, Li Z, et al. Materials Reports, 2021, 35(24), 24128 (in Chinese).
张忠科, 刘旭峰, 李昭, 等. 材料导报, 2021, 35(24), 24128.
12 Yang X R. Electric Welding Machine, 2006, 36, 5.
13 Cao R, Sun J H, Chen J H. Science and Technology of Welding and Joining, 2013, 18(5), 425.
14 Jing S, Wang K, Qi Z, et al. Rare Metal Materials and Engineering, 2013, 42(7), 1337.
15 Fortain J M, Bonnefois B. Welding International, 2004, 18(3), 202.
16 Mahajan S, Chhibber R. Materials and Manufacturing Processes, 2020, 35(9), 1010.
17 Sun Z, Moisio T. Metal Science Journal, 1993, 9(7), 603.
18 Buntain R, Alexandrov B, Viswanathan G. Materials Characterization, 2020, 170(9), 110638.
19 Dak G, Pandey C. International Journal of Pressure Vessels and Piping, 2021, 194, 104536.
20 Qin B, Qi Y C, Cao J C, et al. Heat Treatment of Metals, 2017, 42(5), 7 (in Chinese).
秦斌, 齐彦昌, 曹建春, 等. 金属热处理, 2017, 42(5), 7.
21 Li K J, Li X G, Zhang Y, et al. Electric Welding Machine, 2020, 50(9), 17 (in Chinese).
李克俭, 李晓刚, 张宇, 等. 电焊机, 2020, 50(9), 17.
22 Gitts M, Gooch T. Carbon, 1992, 12, 461.
23 Tang Z X, Yan F, Liu J P. Foundry Technology, 2017, 38(7), 4 (in Chinese).
汤振兴, 闫芳, 刘继鹏. 铸造技术, 2017, 38(7), 4.
[1] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[2] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[3] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[4] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[5] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[6] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[7] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[8] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[9] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[10] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[11] 郝思洁, 褚强, 李文亚, 杨夏炜, 邹阳帆. 电脉冲处理对金属材料组织、力学性能影响的研究进展[J]. 材料导报, 2023, 37(4): 21030039-9.
[12] 王彦明, 高晓红, 李萍, 王廷梅, 王齐华. 原子氧辐照对含苯并咪唑结构聚酰亚胺摩擦学性能影响研究[J]. 材料导报, 2023, 37(4): 21040187-7.
[13] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[14] 吴远东, 郑维爽, 李源遽, 都贝宁, 张兴儒, 李家龙, 于盛洋, 肖忆楠, 赖琛, 盛立远, 黄艺. 聚羟基脂肪酸酯(PHAs)基止血材料研究进展[J]. 材料导报, 2023, 37(3): 21010218-9.
[15] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed