Please wait a minute...
材料导报  2023, Vol. 37 Issue (7): 21070186-12    https://doi.org/10.11896/cldb.21070186
  金属与金属基复合材料 |
先进高强钢中的残余奥氏体:综述
程瑄, 桂晓露, 高古辉*
北京交通大学机械与电子控制工程学院,材料科学与工程研究中心,北京 100044
Retained Austenite in Advanced High Strength Steels:a Review
CHENG Xuan, GUI Xiaolu, GAO Guhui*
Material Science & Engineering Research Center, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
下载:  全 文 ( PDF ) ( 13345KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铁路、建筑、机械等行业的发展对结构材料的安全性和轻量化提出了严格的要求,为此,需要开发高强韧先进高强钢。先进高强钢的特点是通过创新工艺设计实现多相微观结构的组合来满足现代工业对性能要求。目前,第三代先进高强钢主要包括相变诱导塑性(Transformation-induced plasticity,TRIP)钢、淬火-配分(Quenching and partitioning,Q&P)钢、中Mn钢和无碳化物贝氏体(Carbide-free bainite,CFB)钢,因为可以实现力学性能良好的匹配,被认为是未来轻量化结构材料。本文首先概述了近年来第三代先进高强钢的成分设计、固态相变以及组织调控等内容,特别是各种先进热处理工艺过程中合金元素配分对组织转变的作用规律。先进高强钢中复相组织一般包括马氏体、贝氏体、铁素体和残余奥氏体。残余奥氏体的体积分数和稳定性对先进高强钢的力学性能至关重要。接着本文介绍了影响钢中残余奥氏体稳定性的内在因素,并阐述了残余奥氏体对钢强塑性、韧性和疲劳性能的影响规律,为在多相微观组织中获得一定体积的亚稳态残余奥氏体以及探究微观组织与力学性能的关系提供参考。文章最后简述了先进高强钢的发展趋势,为提高金属材料力学性能探索新的方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程瑄
桂晓露
高古辉
关键词:  先进高强钢  残余奥氏体  热处理  力学性能  强塑性    
Abstract: The development of railways, buildings and machineries has necessitated the implementation of stringent requirements for the materials of safe and light-weight structures, which can be achieved through the development of strong and tough advanced high strength steels (AHSS). AHSS are characterized by the combinations of multi-phase microstructures achieved through innovative process designs to meet the performance requirements of modern industries. Currently, the third generation AHSS, which include transformation-induced plasticity (TRIP) steel, quenching and partitioning (Q&P) steel, medium Mn steel, and carbide-free bainitic steel, are considered promising candidates for lightweight structural applications, because they possess the ability to induce combinations of excellent mechanical properties. In this paper, firstly we review recent studies on alloying designs, solid-state phase transformations, microstructure adjustments of the third generation AHSS, in particular, the roles of advanced heat treatments, and partitioning of alloying elements in microstructure transformations. AHSS comprise microstructures of martensite, bainite, ferrite, and retained austenite. The amount and stability of retained austenite are crucial factors affecting the mechanical perfor-mance of AHSS. Secondly, the factors affecting the stability of retained austenite and the effect of austenite retention on strength, ductility, toughness, and fatigue properties are discussed. This paper would provide a reference to future research on obtaining a specific volume of metastable retained austenite in multiphase microstructures and exploring the relationship between microstructures and mechanical properties. Finally, the development trend of AHSS is briefly introduced for exploring new methods to improve the mechanical properties of metals.
Key words:  advanced high strength steels    retained austenite    heat treatment    mechanical property    strength and plasticity
出版日期:  2023-04-10      发布日期:  2023-04-07
ZTFLH:  TG142.24  
基金资助: 中央高校基本科研业务费——智慧高铁系统前沿科学中心开放研究课题(2021QY001)
通讯作者:  * 高古辉,北京交通大学副研究员、博士研究生导师。2013年1月博士毕业于清华大学材料系。同年进入北京交通大学机电学院工作至今,主要从事贝氏体相变与贝氏体钢的研究。在国内外重要期刊发表论文50多篇,授权国家发明专利13项。gaogh@bjtu.edu.cn   
作者简介:  程瑄,2019年毕业于华北科技学院材料成型及控制工程系,现为北京交通大学机电学院硕士研究生。主要从事先进贝氏体钢的研究工作。
引用本文:    
程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
CHENG Xuan, GUI Xiaolu, GAO Guhui. Retained Austenite in Advanced High Strength Steels:a Review. Materials Reports, 2023, 37(7): 21070186-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070186  或          http://www.mater-rep.com/CN/Y2023/V37/I7/21070186
1 Zuidema B K, Denner S G, Engl B, et al. SAE Technical Papers, 2001, DOI:10. 4271/2001-01-3042
2 Sugimoto K I, Usui N, Kobayashi M, et al. Tetsu-to-Hagane, 1992, 78(12), 1311.
3 Cooman B. Current Opinion in Solid State & Materials Science, 2004, 8(3), 285.
4 Girault E, Jacques P, Harlet P, et al. Materials Characterization, 1998, 40(2), 111.
5 Samajdar I, Girault E, Verlinden B, et al. Transactions of the Iron & Steel Institute of Japan, 1998, 38(9), 998.
6 Zackay V F, Parker E R, Fahr D, et al. ASM Trans Quart, 1967, 60(2), 252.
7 Sakuma Y, Matsumura O, Takechi H. Metallurgical Transactions A, 1991, 22(2), 489
8 Wang S, Liu Z, Wang G. Acta Metallurgica Sinica, 2009, 45(9), 1083.
9 Soleimani M, Kalhor A, Mirzadeh H. Materials Science and Engineering A, 2020, 795, 140023.
10 Ying W, Zhang K, Guo Z, et al. Acta Metallurgica Sinica, 2012, 48(6), 641.
11 Mei Z, Jr J. Engineering Fracture Mechanics, 1991, 39(3), 569.
12 Zhao P, Zhang B, Cheng C, et al. Materials Science & Engineering A, 2015, 645, 116.
13 Zhu K Y, Mager C, Huang M X. Journal of Materials Science & Technology, 2017, 33(12),1475.
14 Luo H, Han D. Materials Science & Engineering A, 2015, 626(25), 207.
15 Jun H J, Park S H, Choi S D, et al. Materials Science and Engineering A, 2004, 379(1), 204.
16 Sugimoto K I, Kanda A, Kikuchi R, et al. ISIJ International, 2002, 42(8), 910.
17 Huang J, Poole W J, Militzer M. Metallurgical & Materials Transactions A, 2004, 35(11), 3363.
18 Atkinson C, Akbay T, Reed R C. Acta Metallurgica Et Materialia, 1995, 43(5), 2013.
19 Dai Z, Ding R, Yang Z, et al. Acta Materialia, 2018, 152, 288.
20 Speer J, Matlock D K, Cooman B, et al. Acta Materialia, 2003, 51(9), 2611.
21 Totten G E, Colas R. Encyclopedia of iron, steel, and their alloys, CRC Press, USA, 2016, pp. 2761.
22 Pierce D T, Coughlin D R, Clarke K D, et al. Acta Materialia, 2018, 151, 454.
23 Seo E J, Cho L, De Cooman B C. Acta Materialia, 2016, 107, 354.
24 Seo E J, Cho L, Estrin Y, et al. Acta Materialia, 2016, 113, 124.
25 Allain S, Geandier G, Hell J C, et al. Scripta Materialia, 2017, 131, 15.
26 Behera A K, Olson G B. Scripta Materialia, 2018, 147, 6.
27 Clarke A J, Speer J G, Miller M K, et al. Acta Materialia, 2008, 56(1), 16.
28 Speer J G, Streicher A M, Matlock D K, et al. In:Austenite Formation and Decomposition. Warrendale, 2003, pp. 505.
29 Gerdemann F, Speer J G, Matlock D K. Materials Science & Technology, 2004, 1, 439.
30 Edmonds D V, He K, Rizzo F C, et al. Materials Science & Engineering A, 2006, 438, 25.
31 Hsu T Y, Xu Z Y. Materials Science Forum, 2007, 561, 283.
32 Cai H L, Chen P, Oh J K, et al. Scripta Materialia, 2020, 178, 77.
33 Gao G, Zhang H, Gui X, et al. Acta Materialia, 2014, 76, 425.
34 Bhadeshia H, Edmonds D V. Metallurgical Transactions A, 1979, 10(7), 895.
35 Mahieu J, Cooman B, Maki J. Metallurgical and Materials Transactions A, 2002, 33(8), 2573.
36 Seo E J, Cho L, Cooman B. Metallurgical & Materials Transactions A, 2014, 45(9), 4022.
37 Speer J G, Edmonds D V, Rizzo F C, et al. Current Opinion in Solid State & Materials Science, 2004, 8(3), 219.
38 Bohemen S. Materials Science and Technology, 2012, 28(4), 487.
39 Mecozzi M G, Eiken J, Santofimia M J, et al. Computational Materials Science, 2016, 112, 245.
40 Zhong N, Wang X, Rong Y, et al. Materials Science and Technology, 2006, 22(6), 751.
41 Santofimia M J, Zhao L, Petrov R, et al. Acta Materialia, 2011, 59(15), 6059.
42 Wang M M, Hell J C, Tasan C C. Scripta Materialia, 2017, 138, 1.
43 Dai Z, Ding R, Yang Z, et al. Acta Materialia, 2018, 152, 288.
44 Sugimoto, Koh-ichi, Jyunya Sakaguchi, et al. ISIJ International, 2000, 40(9), 902.
45 Li Y, Cheng C, Zhang F. Advances in Materials Science and Engineering, 2013, 2013(11), 1.
46 Tenaglia N E, Basso A, Massone J, et al. International Journal of Cast Metals Research, 2020, 33(6), 258.
47 Hofer C, Winkelhofer F, Clemens H, et al. Materials Science & Engineering A, 2016, 664, 236.
48 Long X Y, Kang J, Lyu B, et al. Materials & Design, 2014, 64, 237.
49 Wang X L, Wu K M, Hu F, et al. Scripta Materialia, 2014, 74, 56.
50 Caballero F G, Allain S, Puerta-Velasquez J D, et al. ISIJ International, 2013, 53(7), 1253.
51 Long X Y, Kang J, Lv B, et al. Materials & Design, 2014, 64, 237.
52 Shah M, Das S K, Chowdhury S G. Metallurgical and Materials Transactions A, 2019, 50(5), 2092.
53 Gao G, Zhang H, Gui X, et al. Acta Materialia, 2015, 101, 31.
54 Gao G, Zhang H, Gui X, et al. Acta Materialia, 2014, 76, 425.
55 Bhadeshia H K D H, Edmonds D V. Acta Materialia, 1980, 28, 1265.
56 Hillert M. Metallurgical and Materials Transactions A, 1994, 25(9), 1957.
57 Hillert M, Höglund L, Agren J, et al. Metallurgical & Materials Transactions A, 2004, 35(12), 3693.
58 Miller R L. Metallurgical and Materials Transactions B, 1972, 3(4), 905.
59 He B B, Huang M X. Metallurgical and Materials Transactions A, 2018, 49(5), 1433.
60 Han J, Silva A, Ponge D, et al. Acta Materialia, 2017, 122, 199.
61 Miller R L. Metallurgical and Materials Transactions B, 1972, 3(4), 905.
62 Zhao X, Shen Y, Qiu L, et al. Materials, 2014, 7(12), 7891.
63 Moor E D, Matlock D K, Speer J G, et al. Scripta Materialia, 2011, 64(2), 185.
64 Wang C, Shi J, Wang C Y, et al. ISIJ International, 2011, 51(4), 651.
65 Wan X, Liu G, Ding R, et al. Scripta Materialia, 2019, 166, 68.
66 Zhu J, Ding R, He J, et al. Scripta Materialia, 2017, 136, 6.
67 Tsuchiyama T, Inoue T, Tobata J, et al. Scripta Materialia, 2016, 122, 36.
68 Luo H, Jie S, Chang W, et al. Acta Materialia, 2011, 59(10), 4002.
69 Krielaart G P, Zwaag S. Materials Science & Engineering A, 1998, 246(1), 104.
70 Xie Z J, Shang C J, Subramanian S V, et al. Scripta Materialia, 2017, 137, 36.
71 Kamoutsi H, Gioti E, Haidemenopoulos G N, et al. Metallurgical and Materials Transactions A, 2015, 46(11), 4841.
72 Nakada N, Mizutani K, Tsuchiyama T, et al. Acta Materialia, 2014, 65, 251.
73 Zhang X, Miyamoto G, Kaneshita T, et al. Acta Materialia, 2018, 154, 1.
74 Tsuchiyama T, Inoue T, Tobata J, et al. Scripta Materialia, 2016, 122, 36.
75 Dmitrieva O, Ponge D, Inden G, et al. Acta Materialia, 2011, 59(1), 364.
76 Ding R, Dai Z B, Huang M X, et al. Acta Materialia, 2018, 147, 59.
77 Luo H W, Liu J H, Dong H. Metallurgical&Materials Transactions A, 2016, 47(6), 3119.
78 Han J, Lee Y K. Acta Materialia, 2014, 67, 354.
79 Wu Y X, Sun W W, Styles M J, et al. Acta Materialia, 2018, 159, 209.
80 Silva Da, Kwiatkowski A. Inden G, et al. Acta Materialia, 2018, 147, 165.
81 Hu B, Luo H. Acta Materialia, 2019, 176, 250. .
82 Kaufman L, Cohen M. Progress in Metal Physics, 1958, 7, 165.
83 Andrews K W. Iron Steel Inst, 1965, 203, 721.
84 Olson G B, Cohen M. Journal of the Less Common Metals, 1972, 28(1), 107.
85 He B B, Wang M, Huang M X. Metallurgical and Materials Transactions A, 2019, 50(6), 2971.
86 Chatterjee S, Wang H S, Yang J R, et al. Materials Science & Technology, 2006, 22, 641.
87 Morales-Rivas L, Caballero F G, Garcia-Mateo C. Encycl Iron Steel Their Alloy, CRC Press, USA, 2015, pp. 3077.
88 Yang S W, Wu H B, Yuan S Q, et al. Materials Science Forum, 2005, 475, 125.
89 Kajiwara S. Metallurgical & Materials Transactions A, 1986, 17, 1693.
90 He B B, Xu W, Huang M X. Materials Science & Engineering A, 2014, 609, 141.
91 He B B, Huang M X. Metallurgical and Materials Transactions A, 2016, 47(7), 3346.
92 Wang M, Huang M. Acta Materialia, 2020, 188, 551.
93 Koohdar H, Nili-Ahmadabadi M, Habibi-Parsa M, et al. Metallurgical and Materials Transactions A, 2017, 48(11), 5244.
94 Matsuoka Y, Iwasaki T, Nakada N, et al. ISIJ International, 2013, 53(7), 1224.
95 Blonde R, Jimenez-Melero E, Zhao L, et al. Powder Diffraction, 2013, 28(2), 77.
96 Cai Z H, Ding H, Misra R, et al. Acta Materialia, 2015, 84, 229.
97 Wang J, Zwaag S. Metallurgical & Materials Transactions A, 2001, 32(6), 1527.
98 Jimenez-Melero E, Dijk N, Zhao L, et al. Scripta Materialia, 2007, 56(5), 421.
99 Bohemen S V, Morsdorf L. Acta Materialia, 2017, 125, 401.
100 Basuki A, Aernoudt E. Journal of Materials Processing Technology, 1999, 89(99), 37.
101 Zhu K, Magar C, Huang M X. Scripta Materialia, 2017, 134, 11.
102 Järvenpää A, Jaskari M, Man J, et al. Materials Characterization, 2017, 127, 12.
103 Xiong X C, Chen B, Huang M X. Scripta Materialia, 2013, 68(5), 321.
104 Garcia-Mateo C, Caballero F G, Chao J, et al. Journal of Materials Science, 2009, 44(17), 4617.
105 Gao G, Zhang H, Gui X, et al. Acta Materialia, 2014, 76, 425.
106 Lu Y, Hutchinson B, Molodov D A, et al. Acta Materialia, 2010, 58(8), 3079.
107 Dumay A, Chateau J P, Allain S, et al. Materials Science and Enginee-ring A, 2008, 483, 184.
108 Bhadeshia H. ISIJ International, 2002, 42(9), 1059.
109 Frommeyer G, Brüx U. Steel Research International, 2006, 77(9), 627.
110 Park K T, Kim G, Kim S K, et al. Metals & Materials International, 2010, 16(1), 1.
111 Hao Q, Qin S, Liu Y, et al. Materials Science and Engineering, 2016, 662, 16.
112 Wu R, Li W, Zhou S, et al. Metallurgical and Materials Transactions A, 2014, 45(4), 1892.
113 Mayer H R, Stanzl-Tschegg S E, Sawaki Y, et al. Fatigue & Fracture of Engineering Materials & Structures, 2010, 18(9), 935.
114 Jacques P, Furnemont Q, Pardoen T, et al. Acta Materialia, 2001, 49(1), 139.
115 Zhang Z, Koyama M, Wang M M, et al. International Journal of Fatigue, 2017, 100, 176.
116 Kula P, Dybowski K, Lipa S, et al. Metal Science & Heat Treatment, 2014, 56(7), 440.
117 Qian Z, Qian L, Meng J, et al. Materials & Design, 2015, 85, 487.
118 Zhang F C, Long X Y, Kang J, et al. Materials & Design, 2016, 94, 1.
119 Xu W, Huang M H, Wang J L, et al. Acta Metallurgica Sinica, 2020, 56(4), 81.
徐伟, 黄明浩, 王金亮, 等. 金属学报, 2020, 56(4), 81.
120 Gao G, Zhang H, Gui X, et al. Acta Materialia, 2014, 76, 425.
121 Huo C Y, Gao H L. Materials Characterization, 2005, 55(1), 12.
122 Hu Z G, Zhu P, Meng J. Materials & Design, 2010, 31, 2884.
123 Hilditch T, Beladi H, Hodgson P, et al. Materials Science & Enginee-ring A, 2012, 534, 288.
124 Zhang Z, Koyama M, Wang M M, et al. International Journal of Fatigue, 2017, 100, 176.
125 Wang K, Tan Z, Gao G, et al. Materials Science & Engineering A, 2016, 675, 120.
126 Gao G, Zhang B, Cheng C, et al. International Journal of Fatigue, 2016, 92, 203.
127 Gao G, Wang K, Su H, et al. International Journal of Fatigue, 2020, 139, 105804.
128 Yang J, Feng H, Guo Z, et al. Materials Science & Engineering A, 2016, 665, 76.
129 Lu X, Ma Y, Zamanzade M, et al. International Journal of Hydrogen Energy, 2019, 44(36), 20545.
130 Ryu J H, Chun Y S, Lee C S, et al. Acta Materialia, 2012, 60, 4085.
131 Wang M, Tasan C C, Koyama M, et al. Metallurgical and Materials Transactions A, 2015, 46(9), 3797.
[1] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[2] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[3] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[4] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[5] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[6] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[7] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[8] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[9] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[10] 郝思洁, 褚强, 李文亚, 杨夏炜, 邹阳帆. 电脉冲处理对金属材料组织、力学性能影响的研究进展[J]. 材料导报, 2023, 37(4): 21030039-9.
[11] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[12] 王彦明, 高晓红, 李萍, 王廷梅, 王齐华. 原子氧辐照对含苯并咪唑结构聚酰亚胺摩擦学性能影响研究[J]. 材料导报, 2023, 37(4): 21040187-7.
[13] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[14] 吴远东, 郑维爽, 李源遽, 都贝宁, 张兴儒, 李家龙, 于盛洋, 肖忆楠, 赖琛, 盛立远, 黄艺. 聚羟基脂肪酸酯(PHAs)基止血材料研究进展[J]. 材料导报, 2023, 37(3): 21010218-9.
[15] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed