Please wait a minute...
材料导报  2023, Vol. 37 Issue (6): 21080137-6    https://doi.org/10.11896/cldb.21080137
  无机非金属及其复合材料 |
碳纳米管对3D打印混凝土流变性能及力学性能的影响
赵宇1, 武喜凯1, 朱伶俐2,*, 杨章2, 杨若凡2, 管学茂2
1 河南理工大学土木工程学院,河南 焦作 454000
2 河南理工大学材料科学与工程学院,河南 焦作 454000
Effect of Carbon Nanotubes on the Rheological and Mechanical Properties of 3D Printed Concrete
ZHAO Yu1, WU Xikai1, ZHU Lingli2,*, YANG Zhang2, YANG Ruofan2, GUAN Xuemao2
1 School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
2 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
下载:  全 文 ( PDF ) ( 6926KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳纳米管(MWCNTs)是一种性能优良的纳米材料,将其掺入3D打印混凝土(3DPC)中不仅会对基体内部微裂纹的生成和扩展以及3D打印混凝土的宏观力学性能产生显著影响,而且会影响新拌3D打印混凝土的流变性能。为了明确碳纳米管对3D打印混凝土性能的影响,通过设置六种碳纳米管掺量(0%、0.01%、0.02%、0.05%、0.08%、0.1%),研究了碳纳米管的掺量对3D打印凝土流变性能及力学性能的影响,并基于SEM测试结果进行了微观分析。研究结果表明:随着碳纳米管掺量的增加,3D打印混凝土的流动度逐渐下降,静态屈服应力、动态屈服应力逐渐增加。各龄期的抗折强度均随着碳纳米管掺量的增加而增大。随碳纳米管掺量的增加,3D打印混凝土的抗压强度先增大后减小,当碳纳米管掺量为0.05%时,其抗压强度最大。SEM结果显示,碳纳米管可以起到桥接和填充作用,能与基体紧密连接,阻止3D打印混凝土内部微裂缝和孔洞的生成与扩展,在较低掺量(不超过0.05%)下即能显著改善3D打印混凝土的微观结构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵宇
武喜凯
朱伶俐
杨章
杨若凡
管学茂
关键词:  3D打印混凝土  碳纳米管  流变特性  力学性能    
Abstract: Carbon nanotubes(MWCNTs)are nanomaterials with excellent performance. Carbon nanotubes have a significant influence on the formation and propagation of microcracks in the matrix of 3D printed concrete ( 3DPC ) and the macroscopic mechanical properties of 3D printed concrete. In addition, carbon nanotubes affect the rheological properties of fresh 3D printed concrete. The effect of the carbon nanotubes content on the rheological and mechanical properties of the 3D printed concrete was studied by setting 6 types of carbon nanotube content (0%, 0.01%, 0.02%, 0.05%, 0.08%, 0.1%). According to the SEM test results, a microscopic analysis was carried out. The results show that with the increase of carbon nanotube content, the fluidity of 3D printed concrete gradually decreases, and the static yield stress and dynamic yield stress gradually increase. The flexural strength of 3D printed concrete rises as the increase of carbon nanotube content. The compressive strength first increases and then decreases with the increase of carbon nanotube content. When the carbon nanotube content is 0.05%, the compressive strength of the printed specimen is the largest. Carbon nanotubes can play a role of bridging and filling, and be closely connected with the matrix to prevent the formation and expansion of micro-cracks and holes. The microstructure of 3D printed concrete could be significantly improved at a lower carbon nanotube content (no more than 0.05%).
Key words:  3D printed concrete    carbon nanotube    rheological property    mechanical property
发布日期:  2023-03-27
ZTFLH:  TU528  
基金资助: 国家自然科学基金(U1504513;U1905216);河南省高等学校重点科研项目(22A560002)
通讯作者:  *朱伶俐,河南理工大学材料科学与工程学院副教授、硕士研究生导师。2004年6月于河南理工大学获工学学士学位,2007年于河南理工大学获工学硕士学位,同年加入河南理工大学材料科学与工程学院工作至今,自2019年9月起在河南理工大学材料科学与工程学院攻读博士学位。主要从事新型建筑材料、矿用材料的研究。主持和参与国家及省部级项目10余项,省部级奖励5项,发表论文20多篇。zhull@hpu.edu.cn   
作者简介:  赵宇,河南理工大学土木工程学院副教授,硕士研究生导师。2004年6月于河南理工大学获工学学士学位,2007年6月于西南交通大学获工学硕士学位,2018年12月于河南理工大学获工学博士学位。目前主要从事土木工程材料流变及渗透特性等方面的研究,在国内外学术刊物发表学术论文20余篇。
引用本文:    
赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
ZHAO Yu, WU Xikai, ZHU Lingli, YANG Zhang, YANG Ruofan, GUAN Xuemao. Effect of Carbon Nanotubes on the Rheological and Mechanical Properties of 3D Printed Concrete. Materials Reports, 2023, 37(6): 21080137-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080137  或          http://www.mater-rep.com/CN/Y2023/V37/I6/21080137
1 Ngo T D, Kashani A, Imbalzano G, et al. Composites Part B: Engineering, 2018, 143, 172.
2 Ma J W, Jiang Z W, Su Y F. Concrete World, 2014(7), 41(in Chinese).
马敬畏, 蒋正武, 苏宇峰. 混凝土世界, 2014(7), 41.
3 Tay Y W D, Panda B, Paul S C, et al. Virtual and Physical Prototyping, 2017, 12(3), 261.
4 Wu P, Wang J, Wang X Y. Automation in Construction, 2016, 68, 21.
5 Mechtcherine V, Grafe J, Nerella V N, et al. Construction and Building Materials, 2018, 179, 125.
6 Zhao Y, Liu W S, Wang H, et al. Materials Reports, 2020, 34(S2), 1217(in Chinese).
赵颖, 刘维胜, 王欢, 等. 材料导报, 2020, 34(S2), 1217.
7 Schutter G D, Lesage K, Mechtcherine V, et al. Cement and Concrete Research, 2018, 112, 25.
8 Soltan D G, Li V C. Cement and Concrete Composites, 2018, 90, 1.
9 Ogura H, Nerella V N, Mechtcherine V. Materials, 2018, 11(8), 1375.
10 Le T T, Austin S A, Lim S. Materials and Structure, 2012, 45(8), 1221.
11 Hambach M, Möller H, Neumann T, et al. Cement and Concrete Research, 2016, 89, 80.
12 Al-Qutaifi S, Nazari A, Bagheri A. Construction and Building Materials. 2018, 176, 690.
13 Behzad N, Praful V, Jay S, et al. Materials, 2018, 11, 12.
14 Chan L Y, Andrawes B. Computational Materials Science, 2010, 47(4), 994.
15 Niu D T, He J Q, Fu Q T, et al. Journal of the Chinese Ceramic Society, 2020, 48(5), 705(in Chinese).
牛荻涛, 何嘉琦, 傅强碳, 等. 硅酸盐学报, 2020, 48(5), 705.
16 Liu Q L, Sun W, Sun B, et al. Journal of Southeast University(Natural Science Edition), 2014, 44(3), 662(in Chinese).
刘巧玲, 孙伟, 孙波, 等. 东南大学学报(自然科学版), 2014, 44(3), 662.
17 Konsta-Gdoutos M S, Metaxa Z S, Shah S P. Cement and Concrete Research, 2010, 40(7), 1052.
18 Morsy M S, Alsayed S H, Aqel M. Construction and Building Materials, 2010, 25(1), 145.
19 Chaipanich A, Nochaiya T, Wongkeo W, et al. Materials Science and Engineering A, 2010, 527(4-5), 1063.
20 Tramontin S M, Maia F I, Elisângela G M, et al. Journal of Building Engineering, 2020, 32, 101833.
21 Jiao Z K, Wang D M, Wang Q B, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(6), 1821(in Chinese).
焦泽坤, 王栋民, 王启宝, 等. 硅酸盐通报, 2021, 40(6), 1821.
22 Long W J, Tao J L, Lin C, et al. Journal of Cleaner Production, 2019, 239, 118054.
23 Nerella V N, Näther M, Iqbal A, et al. Cement and Concrete Composites, 2019, 95, 260.
24 Zhang Y, Zhang Y S, She W, et al. Construction and Building Materials, 2019, 201, 278.
25 Le T T, Austin S A, Lim S. Materials and Structure, 2012, 45(8), 1221.
26 Zhu P, Deng G H, Shao X D. Materials Reports A : Review Papers, 2018, 32(1), 149(in Chinese).
朱平, 邓广辉, 邵旭东. 材料导报:综述篇, 2018, 32(1), 149.
27 Zhang X, Zhang L. Fly Ash Comprehensive Utilization, 2013(4), 9(in Chinese).
张雄, 张蕾. 粉煤灰综合利用, 2013(4), 9.
28 Musso S, Tulliani J M, Ferro G, et al. Composites Science & Technology, 2009, 69(11-12), 1985.
29 Parveen S, Rana S, Fangueiro R, et al. Journal of Nanomaterials, 2013, 2013(7), 80.
[1] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[2] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[3] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[4] 梁龙, 张鑫, 刘巧玲. 浆体流变性能对超高延性水泥基材料性能的影响[J]. 材料导报, 2023, 37(5): 21070107-7.
[5] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[6] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[7] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[8] 郝思洁, 褚强, 李文亚, 杨夏炜, 邹阳帆. 电脉冲处理对金属材料组织、力学性能影响的研究进展[J]. 材料导报, 2023, 37(4): 21030039-9.
[9] 王彦明, 高晓红, 李萍, 王廷梅, 王齐华. 原子氧辐照对含苯并咪唑结构聚酰亚胺摩擦学性能影响研究[J]. 材料导报, 2023, 37(4): 21040187-7.
[10] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[11] 吴远东, 郑维爽, 李源遽, 都贝宁, 张兴儒, 李家龙, 于盛洋, 肖忆楠, 赖琛, 盛立远, 黄艺. 聚羟基脂肪酸酯(PHAs)基止血材料研究进展[J]. 材料导报, 2023, 37(3): 21010218-9.
[12] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[13] 邱玺, 高士鑫, 李权, 李垣明, 李文杰, 辛勇. 热管反应堆用钼铼合金的研究进展[J]. 材料导报, 2023, 37(2): 21020011-9.
[14] 杨东辉, 唐帅, 吴子彬, 秦克, 张海涛, 崔建忠, Hiromi Nagaumi. 高锌铝合金合金化和加工工艺的研究现状及发展趋势[J]. 材料导报, 2023, 37(2): 21010126-6.
[15] 刘超, 王有强, 刘化威, 张荣飞. 基于打印参数影响的3D打印混凝土力学性能试验研究[J]. 材料导报, 2023, 37(1): 21110276-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed