Please wait a minute...
材料导报  2023, Vol. 37 Issue (2): 21020011-9    https://doi.org/10.11896/cldb.21020011
  金属与金属基复合材料 |
热管反应堆用钼铼合金的研究进展
邱玺1,2, 高士鑫1,2, 李权1,2, 李垣明1,2, 李文杰1,2, 辛勇1,2,*
1 中国核动力研究设计院,成都 610213
2 核反应堆系统设计技术重点实验室,成都 610213
Research Progress of Molybdenum-Rhenium Alloys Used in Heat Pipe Reactor
QIU Xi1,2, GAO Shixin1,2, LI Quan1,2, LI Yuanming1,2, LI Wenjie1,2, XIN Yong1,2,*
1 Nuclear Power Institute of China, Chengdu 610213, China
2 Science and Technology on Reactor System Design Technology Laboratory, Chengdu 610213, China
下载:  全 文 ( PDF ) ( 4049KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热管反应堆是一种采用热管将堆芯产生的热量传导至反应堆二回路或热电转换装置的新型固态反应堆,具有设计结构紧凑、固有安全性高、运行特性简单等特点,在星表能源、深海探测和陆基电源等新兴领域具有广阔应用前景,因而成为目前国内外重点研发的新型反应堆之一。钼铼合金是在金属钼中添加元素铼形成的一种二元固溶体合金,铼元素独特的“铼效应”使钼铼合金在兼具钼合金优异高温力学性能的同时,还具备其他钼合金不具有的良好低温加工性能。同时,钼铼合金在高温下与UO2、UN、UC等核燃料以及热管传热工质碱金属Li、Na、K等都具有良好的相容性,并且铼元素还是一种较好的谱移吸收体材料,可有效降低反应堆发生事故时的临界风险,因而成为国内外众多热管反应堆尤其是高温空间热管反应堆堆芯的设计材料。本文对热管反应堆用钼铼合金的研究现状及进展进行了归纳总结与梳理,包括钼铼合金的成分及相结构、钼铼合金的制造加工工艺、钼铼合金的热物理性能和力学性能等堆外性能,并对钼铼合金中子学特性、辐照性能、与燃料及热管传热工质的相容性等堆内应用性能研究现状进行了介绍。最后对钼铼合金未来的研究方向进行了展望,以期为钼铼合金的研发和工程应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邱玺
高士鑫
李权
李垣明
李文杰
辛勇
关键词:  热管反应堆  钼铼合金  制造加工  力学性能  辐照性能    
Abstract: Heat pipe reactor (HPR) is a newly designed solid-state nuclear reactor which removes the heat passively from the core to the secondary circuit or thermoelectric conversion device. Because of its simple design, inherent safety, easy operation and other advantages, HPR has attracted considerable interest as power source in exoplanet exploration, deep sea exploration, land-based power supply system and other application scenarios. Molybdenum-rhenium alloys are solid solution alloys derived by adding the element rhenium into pure molybdenum, and, unlike other molybdenum alloys, possess simultaneously excellent mechanical strength at high temperature and good processability at room temperature owing to their unique “rhenium effects”. In addition, molybdenum-rhenium alloys have been considered as the candidate materials for heat pipe reactor cores, especially for the space heat pipe reactor operating at extremely high temperatures, because of their excellent mechanical properties and good compatibilities with nuclear fuels like UO2, UN and UC, and alkali metal heat pipe coolants like Li, Na and K at high temperatures. Also, there's another advantage for molybdenum-rhenium alloys, i.e., the element rhenium could act as the spectral shift absorber which can improve the reactor's falling criticality safety. This review summarizes the research progress of molybdenum-rhenium alloys used in heat pipe reactor from the perspectives of chemical compositions and crystal structures, manufacture processes, thermal and physical properties, mechanical properties and other out-pile properties. The neutron irradiation behavior, irradiation properties, compatibilities with nuclear fuels and alkali metal heat pipe coolants and other in-pile application properties of molybdenum-rhenium alloys are introduced in detail as well. The paper ends with a prospective analysis about the challenging issues and the future research directions.
Key words:  heat pipe reactor    molybdenum-rhenium alloy    manufacture process    mechanical property    irradiation property
发布日期:  2023-02-08
ZTFLH:  TF841  
基金资助: 国家自然科学基金(12205285)
通讯作者:  *辛勇,中国核动力研究设计院研究员级高级工程师。2013年1月毕业于北京科技大学,获得凝聚态物理理学博士学位,目前主要研究领域为核燃料及材料设计和性能评价。在Acta Materialia、Journal of Nuclear Materials、Journal of Mate-rials & Technology、《核动力工程》等国内外等杂志发表论文10余篇。   
作者简介:  邱玺,2017年12月毕业于美国加利福尼亚大学圣地亚哥分校,获得材料科学与工程理学硕士学位。2018年进入中国核动力研究设计院从事反应堆燃料材料设计研究工作。现为中国核动力研究设计院在职博士研究生,在焦拥军教授的指导下进行研究。目前主要研究领域为新型反应堆燃料及材料设计及性能评价。
引用本文:    
邱玺, 高士鑫, 李权, 李垣明, 李文杰, 辛勇. 热管反应堆用钼铼合金的研究进展[J]. 材料导报, 2023, 37(2): 21020011-9.
QIU Xi, GAO Shixin, LI Quan, LI Yuanming, LI Wenjie, XIN Yong. Research Progress of Molybdenum-Rhenium Alloys Used in Heat Pipe Reactor. Materials Reports, 2023, 37(2): 21020011-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020011  或          http://www.mater-rep.com/CN/Y2023/V37/I2/21020011
1 Yu H X, Ma Y G, Zhang Z H, et al. Nuclear Power Engineering, 2019, 40(4), 1 (in Chinese).
余红星, 马誉高, 张卓华, 等. 核动力工程, 2019, 40(4), 1.
2 Lu H Y, Tang C B, Li Y M, et al. Nuclear Power Engineering, 2019, 40(S2), 82 (in Chinese).
路怀玉, 唐昌兵, 李垣明, 等. 核动力工程, 2019, 40(S2), 82.
3 Wang J Y, Yu H X, Chai X M, et al. Nuclear Power Engineering, 2020, 41(3), 197 (in Chinese).
王金雨, 余红星, 柴晓明, 等. 核动力工程, 2020, 41(3), 197.
4 Zhang W W, Zhang D L, Wang C L, et al. Annals of Nuclear Energy, 2020, 144, 107576.
5 Groover G M, Cotter T P, Erickson G F. Journal of Applied Physics, 1964, 35(6), 1990.
6 Poston D I. In: AIP Conference Proceedings. New Mexico, 2001, pp. 797.
7 Poston D I, Kapernick R J, Guffee R M, et al. In: AIP Conference Proceedings. New Mexico, 2002, pp. 1096.
8 Poston D I, Mcclure P R, Dixon D D, et al. Nuclear Technology, 2014, 188(3), 229.
9 Poston D I, Kapernick R J, Guffee R M. In: AIP Conference Proceedings. New Mexico, 2002, pp. 578.
10 Hrbud I, van Dyke M, Houts M, et al. In: AIP Conference Proceedings. New Mexico, 2002, pp. 906.
11 VanDyke M, Hrbud I, Goddfellow K, et al. In: 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Indianapolis, 2002, pp. 3819.
12 El-Genk M S, Tournier J M. In: AIP Conference Proceedings. New Mexico, 2004, pp. 658.
13 El-Genk M S, Tournier J M. Progress in Nuclear Energy, 2004, 45(1), 25.
14 Hu G, Zhao S Z. Journal of Deep Space Exploration, 2017, 4(5), 430 (in Chinese).
胡古, 赵守智. 深空探测学报, 2017, 4(5), 430.
15 Zhu A W, Liu L, Ma S J, et al. Journal of Deep Space Exploration, 2017, 4(5), 397 (in Chinese).
朱安文, 刘磊, 马世俊, 等. 深空探测学报, 2017, 4(5), 397.
16 Wang Y, Zhu A W, Liu F B, et al. Journal of Deep Space Exploration, 2020, 7(2), 213 (in Chinese).
王颖, 朱安文, 刘飞标, 等. 深空探测学报, 2020, 7(2), 213.
17 Yao C Z, Hu G, Jie J C, et al. Atomic Energy Science and Technology, 2016, 50(3), 464 (in Chinese).
姚成志, 胡古, 解家春, 等. 原子能科学技术, 2016, 50(3), 464.
18 Sun H, Wang C L, Liu X, et al. Atomic Energy Science and Technology, 2018, 52(4), 646 (in Chinese).
孙浩, 王成龙, 刘逍, 等. 原子能科学技术, 2018, 52(4), 646.
19 El-Genk M S, Tournier J M. Journal of Nuclear Materials, 2005, 340(1), 93.
20 Wang A, Shen F Y, Hu G, et al. Nuclear Techniques, 2020, 43(6), 9 (in Chinese).
王傲, 申凤阳, 胡古, 等. 核技术, 2020, 43(6), 9.
21 Dong D, Huang H T, Xiong N, et al. China Molybdenum Industry, 2018, 42(4), 6 (in Chinese).
董帝, 黄洪涛, 熊宁, 等. 中国钼业, 2018, 42(4), 6.
22 Chen C, Wang M P, Tan W, et al. Materials Reports, 2008, 22(5), 74 (in Chinese).
陈畅, 汪明朴, 谭望, 等. 材料导报, 2008, 22(5), 74.
23 Tan S B, Guo R M, Yang S H, et al. Chinese Journal of Rare Metals, 2003, 27(6), 788 (in Chinese).
谭拴斌, 郭让民, 杨升红, 等. 稀有金属, 2003, 27(6), 788.
24 Mao P L, Han K, Xin Y. Journal of Alloys and Compounds, 2008, 464(1), 190.
25 Farzadfar SA, Levesque M, Phejar M, et al. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 2009, 33(3), 502.
26 Yang Y, Zhang C, Chen S L, et al. Intermetallics, 2010, 18(4), 574.
27 Robert W C. Journal of Nuclear Materials, 1983, 114(1), 113.
28 Okamoto H. Journal of Phase Equilibria & Diffusion, 2010, 31(6), 580.
29 Fabritsiev S A, Gosudarenkova V A, Potapova V A, et al. Journal of Nuclear Materials, 1992, 191, 426.
30 Huang H T, Wang W J, Zhong W Y, et al. Atomic Energy Science and Technology, 2020, 54(3), 505 (in Chinese).
黄洪涛, 王卫军, 钟武烨, 等. 原子能科学技术, 2020, 54(3), 505.
31 Leonard K J, Busby J T, Zinkle S J. Journal of Nuclear Materials, 2007, 366(3), 369.
32 Freund D. Metal Powder Report, 2001, 56(6), 39.
33 Wu L, Xia C Z, Liu P. Welding & Joining, 2017(2), 69 (in Chinese).
吴磊, 夏春智, 刘鹏. 焊接, 2017(2), 69.
34 Hiraoka Y, Morito F, Okada M, et al. Journal of Nuclear Materials, 1978, 78(1), 192.
35 Morito F. Journal of Nuclear Materials, 1989, 165(2), 142.
36 Morito F, Chakin V P, Danylenko M L, et al. Journal of Nuclear Materials, 2011, 417(1), 976.
37 King J C, El-Genk M S. Nuclear Engineering and Design, 2006, 236(3), 238.
38 El-Genk M S, Poon C F. In: AIP Conference Proceedings. New Mexico, 2006, pp. 254.
39 Hu B, Li L, Wu X C, et al. Atomic Energy Science and Technology, 2016, 50(10), 1813 (in Chinese).
胡彬, 李龙, 吴晓春, 等. 原子能科学技术, 2016, 50(10), 1813.
40 Yun D, Lu C Y, Zhou Z J, et al. Materials Reports: Energy, 2021, 1, 100007.
41 Nemoto Y, Hasegawa A, Satou M, et al. Journal of Nuclear Materials, 2004, 324(1), 62.
42 Fabritsiev S A, Pokrovsky A S. Journal of Nuclear Materials, 1998, 252(3), 216.
43 Li Y, Ran G , Guo Y, et al. Acta Materialia, 2021, 201, 462.
44 Li Y, Wang L, Ran G, et al. Acta Materialia, 2021, 206, 116618.
45 Chakin V P, Morito F, Kazakov V A, et al. Journal of Nuclear Materials, 1998, 258-263(part-P1), 883.
46 Hasegawa A, Abe K, Satou M, et al. Journal of Nuclear Materials, 1995, 225, 259.
47 Hasegawa A, Ueda K, Satou M, et al. Journal of Nuclear Materials, 1999, 258-263(4), 902.
48 Edwards D J, Garner F A, Gelles D S. Journal of Nuclear Materials, 2008, 375(4), 370.
49 Busby J T, Leonard K J, Zinkle S J. Journal of Nuclear Materials, 2007, 366(3), 388.
50 Erck R A, Rehn L E. Journal of Nuclear Materials, 1989, 168(3), 208.
51 Erck R A, Rehn L E. Philosophical Magazine A, 1990, 62(1), 29.
52 Krajnikov A, Morito F, Danylenko M. Journal of Nuclear Materials, 2014, 444(3), 404.
53 Krajnikov A, Morito F, Danylenko M. Universal Journal of Materials Science, 2014, 2(2), 19.
54 El-Genk M S, Tournier J M P. Frontiers in Heat Pipes, 2011, 2(1), 013002.
55 El-Genk M. S, Xue H, Paramonov D. Nuclear Technology, 1993, 105(1), 70.
56 Reid R S, Merrigan M A, Sena J T. In: AIP Conference Proceedings. New York, 1991, pp. 999.
57 Saito J I, Morinaga M, Kano S, et al. Journal of Nuclear Materials, 1999, 264(1-2), 206.
58 Merrigan M A. In:Space Nuclear Power Systems, El-Genk M S, Hoover M D, eds. , Orbit Book Company, Malabar, 1985.
59 Ivanovskii M N, Sorokin V P, Yagodkin I V. In:the Physical Principles of Heat Pipes, Berman R, Rice G, eds. , Oxford University, New York, 1982.
60 DiStefano J R, Pint B A, DeVan J H. International Journal of Refractory Metals & Hard Materials, 2000, 18(4-5), 237.
[1] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[2] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[3] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[4] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[5] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[6] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[7] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[8] 郝思洁, 褚强, 李文亚, 杨夏炜, 邹阳帆. 电脉冲处理对金属材料组织、力学性能影响的研究进展[J]. 材料导报, 2023, 37(4): 21030039-9.
[9] 王彦明, 高晓红, 李萍, 王廷梅, 王齐华. 原子氧辐照对含苯并咪唑结构聚酰亚胺摩擦学性能影响研究[J]. 材料导报, 2023, 37(4): 21040187-7.
[10] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[11] 吴远东, 郑维爽, 李源遽, 都贝宁, 张兴儒, 李家龙, 于盛洋, 肖忆楠, 赖琛, 盛立远, 黄艺. 聚羟基脂肪酸酯(PHAs)基止血材料研究进展[J]. 材料导报, 2023, 37(3): 21010218-9.
[12] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[13] 杨东辉, 唐帅, 吴子彬, 秦克, 张海涛, 崔建忠, Hiromi Nagaumi. 高锌铝合金合金化和加工工艺的研究现状及发展趋势[J]. 材料导报, 2023, 37(2): 21010126-6.
[14] 杨正宏, 刘思佳, 吴凯, 于龙, 潘峰. 纤维增强磷酸镁水泥基复合材料研究进展[J]. 材料导报, 2023, 37(1): 20110150-7.
[15] 黄智恒, 薛松柏, 王博, 张帆, 龙伟民. Sm对SAl 4043铝合金焊丝的组织、性能及氢含量的影响[J]. 材料导报, 2023, 37(1): 21080231-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed