Please wait a minute...
材料导报  2023, Vol. 37 Issue (3): 21080047-6    https://doi.org/10.11896/cldb.21080047
  金属与金属基复合材料 |
退火温度对LH800空冷强化钢组织与力学性能的影响
罗翔1, 米振莉1,*, 吴彦欣1, 杨永刚1,2, 江海涛1, 胡宽辉3
1 北京科技大学工程技术研究院,北京 100083
2 瑞典皇家理工学院材料科学与工程系,瑞典 斯德哥尔摩 SE-10044
3 宝山钢铁股份有限公司中央研究院,上海 201900
Effect of Annealing Temperature on Microstructure and Mechanical Properties of Air-hardening LH800 Steel
LUO Xiang1, MI Zhenli1,*, WU Yanxin1, YANG Yonggang1,2, JIANG Haitao1, HU Kuanhui3
1 Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
2 Department of Materials Science and Engineering, KTH Royal Institute of Technology, Brinellvägen 23, Stockholm, SE-10044, Sweden
3 Central Research Institute, Baoshan Iron & Steel Co., Ltd., Shanghai 201900, China
下载:  全 文 ( PDF ) ( 13241KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为获得具备良好冷成形性能的空冷强化钢,以冷轧LH800为研究对象,采用SEM、EBSD、TEM等技术手段,研究了该钢种在罩式退火过程中的组织演变和力学性能变化。研究结果表明:在600~700 ℃退火得到了铁素体+碳化物组织,拉伸曲线出现明显的屈服平台,并且屈服平台长度随退火温度的升高而减小。随着退火温度升高,铁素体晶内纳米级碳化物数量逐渐减少,晶界粗大碳化物数量逐渐增多,小角度晶界体积分数逐渐减小,且局部取向差(KAM)值逐渐减小。当退火温度超过700 ℃时,显微组织为铁素体+马氏体+碳化物,拉伸曲线无屈服平台出现。随着退火温度的进一步升高,马氏体体积分数逐渐增加,KAM值也逐渐增大。力学性能结果显示:在700 ℃退火保温4 h,空冷强化钢的屈服强度和抗拉强度最低,延伸率最高,具备最佳的冷成形性能。本工作基于冷轧LH800退火过程的显微组织和纳米级碳化物的演变,揭示了LH800出现屈服平台现象的本质,并获得了该钢种具备最佳冷成形性能的关键工艺参数。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗翔
米振莉
吴彦欣
杨永刚
江海涛
胡宽辉
关键词:  退火温度  LH800空冷强化钢  组织演变  力学性能  纳米级碳化物  屈服平台    
Abstract: In order to obtain air-hardening steel with good cold formability, the microstructure evolution and mechanical properties of cold rolled LH800 steel during the batch annealing were studied by means of scanning electron microscopy, electron back scatter diffraction, transmission electron microscopy, and other technical means. The results showed that the ferrite + carbide structure was obtained by annealing between 600 ℃ and 700 ℃, the tensile curve had an obvious yield plateau, and the length of the yield plateau decreased with annealing temperature increasing. As the annealing temperature increased, the nanoscale carbides inside the ferrite grain gradually decreased, the coarse carbides at the grain boundary gradually increased, the volume fraction of low-angle grain boundaries gradually decreased, and the kernel average misorientation (KAM) value gradually decreased. When the annealing temperature exceeded 700 ℃, the microstructure was ferrite + martensite + carbide, and no yield plateau appeaed in the tensile curve. As the annealing temperature continued to increase, the volume fraction of martensite gradually increased, as did the KAM value. The mechanical property analysis showed that, after annealing at 700 ℃ for 4 h, air-hardening steel had the lowest yield strength and tensile strength, the highest elongation, and the best cold-forming performance. Based on the evolution of the microstructure and the nanoscale carbides of cold-rolled LH800 steel during the annealing process, this work revealed the essence of the yield-plateau phenomenon of LH800 steel and obtained its key process parameters of best cold-forming-performance.
Key words:  annealing temperature    air-hardening steel LH800    microstructure evolution    mechanical property    nano-scale carbides    yield plateau
出版日期:  2023-02-10      发布日期:  2023-02-23
ZTFLH:  TG156.2  
基金资助: 国家重点研发计划(2017YFB0304404)
通讯作者:  *zhenli_mi@163.com,米振莉,研究员,博士研究生导师,北京科技大学工程技术研究院副院长,中国金属学会金属材料深度加工分会秘书长,中国汽车工程学会理事。主要研究方向是金属材料的轧制工艺、先进汽车用钢开发及钢材深加工等,从事钢铁材料的技术研发和钢材品种的性能优化。在研的国家和企业项目数十项,发表学术论文百余篇,获得授权发明专利近20项,以及市级、省部级多项科技奖励。   
作者简介:  罗翔,北京科技大学博士研究生。2013年6月,在南昌航空大学获得金属材料专业学士学位;2017年6月,在昆明理工大学获得材料工程专业硕士学位。目前,在米振莉教授指导下进行学术研究,参与多个国家重点研发计划项目,主要研究领域为汽车用先进高强钢的品种开发及性能优化。
引用本文:    
罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
LUO Xiang, MI Zhenli, WU Yanxin, YANG Yonggang, JIANG Haitao, HU Kuanhui. Effect of Annealing Temperature on Microstructure and Mechanical Properties of Air-hardening LH800 Steel. Materials Reports, 2023, 37(3): 21080047-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080047  或          http://www.mater-rep.com/CN/Y2023/V37/I3/21080047
1 Kang Y L, Zhu G M. Iron & Steel, 2014, 49(12), 1(in Chinese).
康永林, 朱国明.钢铁, 2014, 49(12), 1.
2 Suh D W, Kim S J. Scripta Materialia, 2017, 126, 63.
3 Galán J, Samek L, Verleysen P, et al.Revista de Metalurgia, 2012, 48(2), 118.
4 Lee D, Kim J K, Lee S, et al.Materials Science and Engineering A, 2017, 706, 1.
5 Zhang R, Cao W Q, Peng Z J, et al.Materials Science and Engineering A, 2013, 583, 84.
6 Kalashami A G, Kermanpur A, Najafizadeh A, et al.Materials Science and Engineering A, 2016, 658, 355.
7 Zhang J, Di H, Deng Y, et al.Materials Science and Engineering A, 2015, 627, 230.
8 Grydin O, Rodman D, Schaper M. Steel Research International, 2012, 83(11), 1020.
9 Schaper M, Grydin O, Nürnberger F. HTM Journal of Heat Treatment and Materials, 2013, 68(1), 42.
10 Grydin O, Nuernberger F, Zou Y, et al.Steel Research International, 2014, 85(9), 1340.
11 Wolf L O, Nürnberger F, Rodman D, et al.Steel Research International, 2017, 88(2), 1600107.
12 Grydin O, Andreiev A, Zogaj M, et al.Advanced Engineering Materials, 2019, 21(10), 1900134.
13 Okan P, Bilgehan Ö.Journal of Materials Research and Technology, 2020, 9(5), 11263.
14 Zheng C, Raabe D. Acta Materialia, 2013, 61(14), 5504.
15 Butler J F.Journal of the Mechanics and Physics of Solids, 1962, 10(4), 313.
16 Morrison W B. ASM Trans Quart, 1966, 59(4), 824.
17 Tsuchida N, Tomota Y, Nagai K, et al.Scripta Materialia, 2006, 54(1), 57.
18 Johnson D H, Edwards M R, Chard-Tuckey P. Materials Science and Engineering A, 2015, 625, 36.
19 Schulson E M, Weihs T P, Viens D V, et al.Acta Metallurgica, 1985, 33(9), 1587.
20 Yuan W, Panigrahi S K, Su J Q, et al.Scripta Materialia, 2011, 65(11), 994.
21 Zhao M, Li J C, Jiang Q.Journal of Alloys and Compounds, 2003, 361(1-2), 160.
22 Hutten E, Liang S, Bellhouse E, et al.Journal of Materials Research and Technology, 2021,14, 2061.
23 Chen C Y, Yen H W, Kao F H, et al.Materials Science and Engineering A, 2009, 499(1-2), 162.
[1] 吴远东, 郑维爽, 李源遽, 都贝宁, 张兴儒, 李家龙, 于盛洋, 肖忆楠, 赖琛, 盛立远, 黄艺. 聚羟基脂肪酸酯(PHAs)基止血材料研究进展[J]. 材料导报, 2023, 37(3): 21010218-9.
[2] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[3] 邱玺, 高士鑫, 李权, 李垣明, 李文杰, 辛勇. 热管反应堆用钼铼合金的研究进展[J]. 材料导报, 2023, 37(2): 21020011-9.
[4] 杨东辉, 唐帅, 吴子彬, 秦克, 张海涛, 崔建忠, Hiromi Nagaumi. 高锌铝合金合金化和加工工艺的研究现状及发展趋势[J]. 材料导报, 2023, 37(2): 21010126-6.
[5] 杨正宏, 刘思佳, 吴凯, 于龙, 潘峰. 纤维增强磷酸镁水泥基复合材料研究进展[J]. 材料导报, 2023, 37(1): 20110150-7.
[6] 黄智恒, 薛松柏, 王博, 张帆, 龙伟民. Sm对SAl 4043铝合金焊丝的组织、性能及氢含量的影响[J]. 材料导报, 2023, 37(1): 21080231-6.
[7] 薛海涛, 李涛, 郭卫兵, 陈翠欣, 赵江龙, 丁志杰. 钎焊参数对Al2O3陶瓷/304不锈钢接头组织和性能的影响[J]. 材料导报, 2023, 37(1): 21090089-5.
[8] 刘忠柱, 赵伟, 潘玮, 李睢水, 郑国强, 李倩. 多壁碳纳米管改性等规聚丙烯复合材料的结构及性能研究[J]. 材料导报, 2023, 37(1): 20100004-6.
[9] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[10] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[11] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[12] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[13] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[14] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[15] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed