Please wait a minute...
材料导报  2023, Vol. 37 Issue (2): 21010126-6    https://doi.org/10.11896/cldb.21010126
  金属与金属基复合材料 |
高锌铝合金合金化和加工工艺的研究现状及发展趋势
杨东辉1, 唐帅1, 吴子彬1, 秦克1, 张海涛1,*, 崔建忠1, Hiromi Nagaumi2
1 东北大学材料电磁过程研究教育部重点实验室(EPM),沈阳 110006
2 苏州大学沙钢钢铁学院,江苏 苏州 215021
Research Status and Development Trend of Alloying and Process Technology of High-zinc Aluminum Alloy
YANG Donghui1, TANG Shuai1, WU Zibin1, QIN Ke1, ZHANG Haitao1,*, CUI Jianzhong1, Hiromi Nagaumi2
1 Key Lab of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110006, China
2 School of Iron and Steel, Soochow University, Suzhou 215021,Jiangsu, China
下载:  全 文 ( PDF ) ( 2573KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高锌铝合金是指含锌量为10%~45%的铝基合金,具有耐磨性好、强度硬度高和阻尼性能优异等优点,被广泛应用于滑动轴承、轴瓦等耐磨件,是锡铜合金和锌铝耐磨合金良好的替代品。高锌铝合金作为耐磨合金替代锡铜合金不仅降低了工件的生产成本,而且弥补了我国锡铜金属资源匮乏的缺憾。但是,高锌铝合金也存在尺寸稳定性差、塑性低、抗蠕变性能和耐腐蚀性差等缺点。现阶段,高锌铝合金的强韧化机制主要有以下几个方面:(1)对高锌铝合金进行合金化处理,如在Al-Zn合金中添加Cu、Si、Mn、Ti、Er、Sc、Zr等元素。首先合金元素与基体结合形成硬质颗粒可以增加合金的强度硬度;其次,合金元素在凝固过程中可以作为异质形核中心,导致晶粒尺寸减小。(2)在凝固过程中提高冷却速度,采用压铸或挤压铸造的方法可以获得较快的冷却速度。凝固过程中较快的冷却速度有利于提高形核速率,并显著细化第二相与晶粒的尺寸。(3)对高锌铝合金进行塑性变形处理,如挤压、轧制等加工工艺可以消除合金的铸造缺陷、细化晶粒、增加位错密度,从而提高高锌铝合金的强度。本文综述了近年来国内外高锌铝合金显微组织和性能的研究现状及主要存在的问题,介绍了Zn、Cu、Si、Mn、Ti、Zr、Er、Sc等合金元素对高锌铝合金组织及性能的影响,总结了变形工艺及热处理工艺对高锌铝合金组织与性能的影响,最后分析了高锌铝合金的优缺点并展望其研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨东辉
唐帅
吴子彬
秦克
张海涛
崔建忠
Hiromi Nagaumi
关键词:  高锌铝合金  轴承材料  力学性能  加工工艺    
Abstract: High-zinc aluminum alloy which refers to an aluminum-based alloy with the content of Zn ranges from 10% to 45%, has the advantages of excellent wear-resisting performance, high strength, high hardness and excellent damping capacity. It is widely used in sliding bearings, shafts, and other wear-resistant parts. High-zinc aluminum alloy is a substitute for tin-copper alloy and zinc-aluminum alloy. As a wear-resistant alloy to replace tin-copper alloy and zinc aluminum alloy, high-zinc aluminum alloy not only reduces the cost of production but also makes up for the lack of tin-copper resources in China. However, the high-zinc aluminum alloy also has disadvantages such as low dimensional stability and plasticity, poor creep resistance and poor corrosion resistance. Nowadays, the following methods have been used to improve the mechanical properties of high-zinc aluminum alloys: (ⅰ) alloying technique has been applied in Al-Zn alloys, such as adding Cu, Si, Mn, Ti, Er, Sc, Zr and other elements. First, the hard particles formed after the alloying elements react with the matrix can increase the strength and hardness of the alloy. Secondly, alloying elements can serve as heterogeneous nucleation centers during solidification, leading to a reduction in grain size. (ⅱ) Increasing the cooling rate of solidification, such as die-casting and squeeze-casting. A high cooling rate during solidification is beneficial for increasing the rate of nucleation and results in a notable refinement in the size of grains and secondary phases. (ⅲ) Plastic deformation (such as extrusion and rolling), which can eliminate the cast defects, refine the grain size and increase the dislocation density, consequently increase the strength of Al-Zn alloys. This review offers the current status of research on the microstructure and mechanical properties of high-zinc aluminum alloys in recent years. On the basis of summing up the existing literature. This paper introduces the influence of alloying elements Zn, Cu, Si, Mn, Ti, Zr, Er, Sc and other elements on the microstructure and properties of high-zinc aluminum alloys, introduces the influence of the deformation process and heat treatment process on the microstructure and properties of high-zinc aluminum alloys. Finally, the advantages and disadvantages of high-zinc aluminum alloy are analyzed and its research direction is prospected.
Key words:  high-zinc aluminium alloy    bearing material    mechanical property    process technology
发布日期:  2023-02-08
ZTFLH:  TG135+.5  
基金资助: 国家自然科学基金(U1864209)
通讯作者:  *张海涛,东北大学材料电磁过程教育部重点实验室(EPM)副教授、硕士研究生导师。2001年毕业于东北大学材料成型及控制工程专业。2001年9月进入东北大学EPM实验室硕博连读,于2007年获博士学位。2004年留校任教,2015年任东北大学副教授。主要从事轻合金数值模拟、新材料开发、金属基复合材料、电磁制备工艺及理论研究工作。2007年9月任职以来在国内外学术刊物发表论文80余篇, 已授权国家发明专利18项。   
作者简介:  杨东辉,2018年6月毕业于辽宁科技大学,获得工学学士学位。现为东北大学EPM实验室博士研究生,在秦克副教授和张海涛副教授的指导下进行研究。目前的主要研究领域为新型高锌铝合金的研发。
引用本文:    
杨东辉, 唐帅, 吴子彬, 秦克, 张海涛, 崔建忠, Hiromi Nagaumi. 高锌铝合金合金化和加工工艺的研究现状及发展趋势[J]. 材料导报, 2023, 37(2): 21010126-6.
YANG Donghui, TANG Shuai, WU Zibin, QIN Ke, ZHANG Haitao, CUI Jianzhong, Hiromi Nagaumi. Research Status and Development Trend of Alloying and Process Technology of High-zinc Aluminum Alloy. Materials Reports, 2023, 37(2): 21010126-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010126  或          http://www.mater-rep.com/CN/Y2023/V37/I2/21010126
1 Mazilkin A A, Straumal B B, Rabkin E. et al. Acta Materialia, 2006, 54(15), 3933.
2 Alhamidi A, Edalati K, Horita Z, et al. Materials Science and Engineering: A, 2014, 610, 17.
3 Straumal B, Valiev R, Kogtenkova O. et al. Acta Materialia, 2008, 56(20), 6123.
4 Liu C Y, Yu L, Ma M Z, et al. Philosophical Magazine Letters, 2015, 95(11), 539.
5 Borodachenkova M, Barlat F, Wen W, et al. International Journal of Plasticity, 2015, 68, 150.
6 Archana S R, Arun P S, Sreelekshmi B R, et al. Materials Science and Engineering: B, 2020, 261(5), 114768.
7 Savaşkan T, Alemdağ Y. Materials Science and Engineering: A, 2008, 496(1-2), 517.
8 Shin S S, Lim K M, Park I M. Journal of Alloys and Compounds, 2016, 671, 517.
9 Shin S S, Lim K M, Park I M. Materials Science and Engineering: A, 2017, 679, 340.
10 Jiang H J, Liu C Y, Cehn Y, et al. Journal of Alloys and Compounds, 2018, 739, 113.
11 Cao F J, Tan B, Li W G, et al. Hebei Journal of Industrial Science and Technology, 2006, 23(6), 381(in Chinese).
曹风江, 谭建波, 李文革, 等. 河北工业科技, 2006, 23(6), 381.
12 Gervais E, Levert H, Bess M. Transactions of the American Foundrymen's Society, 1980, 8, 183.
13 Shang F S, Duan S F. China Mining Magazine, 2009, 18(2), 5(in Chinese).
尚福山, 段绍甫. 中国矿业, 2009, 18(2), 5.
14 Zhou J Y, Sun Y M, Fu S X. Geolegical Bullentin China, 2009, 28(2), 171(in Chinese).
周京英, 孙延绵, 付水兴. 地质通报, 2009, 28(2), 171.
15 Lu W, Yan B. Shanghai Nonferrous Metals, 2004(1), 13(in Chinese).
陆伟, 严彪. 上海有色金属, 2004(1), 13.
16 Xie N S, Wang Y, Wu L Z. Hot Working Technology, 2010, 39(14), 50(in Chinese).
解念锁, 王艳, 武立志. 加工工艺, 2010, 39(14), 50.
17 Savaşkan T, Alemdağ Y. Wear, 2010, 268(3-4), 565.
18 Alemdağ Y, Savaşkan T. Tribology Letters, 2008, 29(3), 221.
19 Alemdağ Y, Savaşkan T. Tribology International, 2009, 42(1), 176.
20 Lei X Y, Wang J. Think Tank Era, 2018(37), 290(in Chinese).
雷晓燕, 王娟. 智库时代, 2018(37), 290.
21 Boumerzoug Z, Fatmi M. Materials Characterization, 2009, 60(8), 768.
22 Zhang D Y, Li C X, Yang H W. In:2010 China Foundry Congress. Hangzhou, China, 2010, pp. 330(in Chinese).
张得宇, 李晨希, 杨红旺. 中国铸造活动周. 杭州, 2010, pp. 330.
23 Zhu Y H, Man H C, Lee W B. Materials Science and Engineering: A, 1999, 268(1), 147.
24 Savaskan T, Turhal M S, Murphy S. Materials Science & Technology, 2003, 19(1), 67.
25 Ratke L, Diefenbach S. Materials Science and Engineering: R: Reports, 1995, 15(7), 263.
26 Şevki H. Materials Characterization, 2014, 89, 81.
27 Valiev R Z, Murashkin M Y, Kilmametov A, et al. Journal of Materials Science, 2010, 45(17), 4718.
28 Jiang H J, Liu C Y, Ma Z Y, et al. Journal of Alloys and Compounds, 2017, 722, 138.
29 Lavernia E J, Perez R J, Zhang J. Metallurgical and Materials Transactions A, 1995, 26(11), 2803.
30 Luo B H, Bai Z H, Xie Y Q. Materials Science and Engineering: A, 2004, 370(1-2), 172.
31 Sauvage X, Murashkin M Y, Straumal B B, et al. Advanced Engineering Materials, 2015, 17(12), 1821.
32 Moon B C, Lee Z H. Scripta Materialia, 1997, 38(2), 207.
33 Alhanidi A, Edalati K, Horita Z, et al. Materials Science and Engineering: A, 2014, 610(4), 17.
34 Liu C Y, Yu, Ma Z, et al. Philosophical Magazine Letters, 2015, 95(11), 539.
35 Mazilkin A A, Straumal B B, Borodachenkova M V, et al. Materials Letters, 2012, 84, 63.
36 Meng X N, Zhang D T, Zhang W W, et al. Journal of Alloys and Compounds, 2020, 819, 152990.
37 Guan R G, Tie D. Acta Metallurgica Sinica, 2017, 30(5), 409.
38 Sivasankaran S, Ramkumar K R, Ammar H R, et al. Journal of Materials Processing Technology, 2021, 292, 117063.
39 Karamazi Y, Bayram Ü, Ata P, et al. Transactions of Nonferrous Metals Society of China, 2016, 26(9), 2320.
40 Gres T, Mittler T, Chen H, et al. Journal of Materials Processing Technology, 2020, 280, 116594.
41 Xu L J, Tao S P, Ma Y, et al. Heat Treatment of Metals, 2017, 42(4), 27(in Chinese).
许丽君, 陶世平, 马莹, 等. 金属热处理, 2017, 42(4), 27.
42 Shin S S, Lim K M, Park I M. Journal of Alloys & Compounds, 2016, 671, 517.
43 Yang D X, Gao C Z, Xie J P, et al. Foundry technology, 2010, 31(11), 1448(in Chinese).
杨涤心, 高存贞, 谢敬佩, 等. 铸造技术, 2010, 31(11), 1448.
44 Wang R L, Li X T, Gao Z W, et al. Light Alloy Fabrication Technology, 2010, 38(5), 50(in Chinese).
王瑞亮, 李新涛, 高作文, 等. 轻合金加工技术, 2010, 38(5), 50.
45 Savaşkan T, Hekimoğlu A P, Pürçek G. Tribology International, 2004, 37(1), 45.
46 Li H X, Wang D P, Zhao G, et al. Journal of Northeastern University Natural Science, 2002, 23(5), 447(in Chinese).
李洪晓, 王大鹏, 赵刚, 等. 东北大学学报, 2002, 23(5), 447.
47 Li R X, Li R D, Bai Y H. Transactions of Nonferrous Metals Society of China, 2010, 20(1), 59.
48 Durman M, Murphy S. Acta Metallurgica et Materialia, 1991, 39(10), 2235.
49 Prasad B K, Yegneswaran A H, Patwardhan A K. Metallurgical & Materials Transactions A, 1996, 27(11), 3513.
50 Savaşkan T, Turhal M. Materials Characterization, 2003, 51(4), 259.
51 Han S Z, Choi E A, Park H W, et al. Scientific Reports, 2017, 7(1), 12195.
52 Gao Y Y, Qiu F, Shu S L, et al. Archives of Civil and Mechanical Engineering, 2018, 18(1), 179.
53 Ilangovan S, Arul S, Shanmugasundaram A. International Journal of Engineering Research in Africa, 2016, 27, 1.
54 Chen F, Wang T M, Chen Z N, et al. Transactions of Nonferrous Metals Society of China, 2015, 25(1), 103.
55 Yang A M. Research on microstructure and properties of high aluminum Zn-based ZA78 alloys. Master's Thesis, Xi'an University of Technology, China, 2010(in Chinese).
杨爱梅. ZA78高锌铝合金组织性能研究. 硕士学位论文, 西安理工大学, 2010.
56 Savaşkan T, Bican O, Alemdağ Y. Journal of Materials Science, 2009, 44(8), 1969.
57 Savaskan T, Bican O. Tribology Letters, 2010, 40(3), 327.
58 Savaşkan T, Aydiner A. Wear, 2004, 257(3), 377.
59 Lee P P, Savaskan T, Laufer E. Wear, 1987, 117(1), 79.
60 Prasad B K. Materials Transactions Jim, 1997, 38(8), 701.
61 Savaşkan T, Bican O. Materials Science and Engineering: A, 2005, 404(1-2), 259.
62 Wu Z, Sandlöbes S, Wang Y, et al. Materials Science and Engineering: A, 2018, 724(1), 80.
63 Prasad B K. Materials Science and Engineering: A, 2005, 392(1-2), 427.
64 Prasad B K, Patwardhan A K, Yegneswaran A H. Wear, 1996, 199(1), 142.
65 Zhao J. The effects of trace elements Er and Zr on the microstructure and properties of ZA43 alloy. Master's Thesis, Shenyang University of Tec-hnology, China, 2012(in Chinese).
赵静. 微量元素Er和Zr复合合金化对锌铝合金组织及性能的影响. 硕士学位论文, 沈阳工业大学, 2012.
66 Li D, He S R, Li W. Nonferrous Metals Processing, 2015, 44(5), 7(in Chinese).
李丹, 何顺荣, 李伟. 有色金属加工, 2015, 44(5), 7.
67 Zhou M, Zhao Y T. Journal of Jiangsu University of Science and Technology, 1998(1), 60(in Chinese).
周明, 赵玉涛. 江苏大学学报(自然科学版), 1998(1), 60.
68 Krajewski W K, Greer A L, Buraś J, et al. Materials Today, Proceedings, 2019, 10, 306.
69 Tsivoulas D, Prangnell P B. Acta Materialia, 2014, 77, 1.
70 Krajewski P K, Greer A L, Krajewski W K. Journal of Materials Engineering and Performance, 2019, 28(7), 3986.
71 Hekimoğlu A P, Çaliş M. Transactions of Nonferrous Metals Society of China, 2020, 30(2), 303.
72 Krajewski W K, Greer A L, Krajewski P K. Archives of Metallurgy & Materials, 2013, 58(3), 845.
73 Krajewski W K, Greer A L, Piwowarski G, et al. IOP Conference Series Materials Science and Engineering, 2016, 117(1), 012004.
74 Huang J, Zhang Z M, Yuan Z Y, et al. Foundry Technology, 2001(6), 60(in Chinese).
黄俊, 张忠明, 袁中岳, 等. 铸造技术, 2001(6), 60.
75 Bura J, Szucki M, Piwowarski G, et al. China Foundry, 2017, 14(3), 211.
76 Buras J, Szucki M, Gracz B, et al. International Journal of Cast Metals Research, 2018, 31(6), 352.
77 Shin S S, Yeom G Y, Kwak T Y, et al. Journal of Materials Science & Technology, 2016, 32(7), 653.
78 Chen T J, Hao Y, Sun J, et al. Science and Technology of Advanced Materials, 2003, 4(6), 495.
79 Zhu S L. Non-ferrous Metals & Rareearth, 2001(2), 13(in Chinese).
朱绍林. 有色金属与稀土应用, 2001(2), 13.
80 Zhang Z C, Huang F X, Ruan H G, et al. Journal of Chongqing Institute of Technology, 2017, 31(8), 86(in Chinese).
张照超, 黄福祥, 阮海光, 等. 重庆理工大学学报(自然科学), 2017, 31(8), 86.
81 Liu C Y, Zhang X, Xia C Q, et al. Materials Science and Engineering: A, 2017, 703, 45.
82 Zhou W B, Liu P F, Yu P F, et al. Materials Characterization, 2017, 127, 371.
83 Xu C, Xiao W, Hanada S, et al. Materials Characterization, 2015, 110, 160.
84 Zhang W, Liu Y, Yang J, et al. Materials Characterization, 2012, 66, 104.
85 Zhou S A, Zhang Z, Li M, et al. Materials and Design, 2016, 90, 1077.
86 Liu F C, Ma Z Y, Zhang F C. Journal of Materials Science and Technology, 2012, 28(11), 1025.
87 Senkov O N, Shagiev M R, Senkova S V, et al. Acta Materialia, 2008, 56(15), 3723.
88 Avtokratova E, Sitdikov O, Markushev M, et al. Materials Science and Engineering: A, 2012, 538, 386.
89 Deng Y, Xu G, Yin Z, et al. Journal of Alloys and Compounds, 2013, 580, 412.
90 Ma Y, Zhou X, Thompson G E, et al. Materials Chemistry and Physics, 2011, 126(1-2), 46.
91 Dao V, Zhao S, Lin W, et al. Materials Science and Engineering: A, 2012, 558(2), 95.
92 Chen G, Yang M, Jin Y, et al. Journal of Materials Processing Technology, 2019, 266, 19.
93 Wang W, Pan Q, Lin G, et al. Journal of Materials Science and Technology, 2020, 58, 155.
94 Hussain Z, Al-Mufadi F A, Subbarayan S, et al. Materials Science and Engineering: A, 2018, 712(4), 772.
95 Shin S S, Lee J C, Park I M. Materials Science and Engineering: A, 2017, 690, 177.
96 Fang H Z, Li R X, Chen R R, et al. Transactions of Nonferrous Metals Society of China, 2015, 25(7), 2130.
97 Wei Q, Xiong B Q, Zhang Y A, et al. Transactions of Nonferrous Metals Society of China, 2001, 11(2), 258.
98 Sharma M M. Materials Characterization, 2008, 59(1), 91.
99 Yamauchi A, Yoshimi K, Kurokawa K, et al. Journal of Alloys and Compounds, 2006, 434-435, 420.
100 Sitdikov O, Sakai T, Miura H, et al. Materials Science and Engineering: A, 2009, 516(1-2), 180.
101 Li D F, Zhang X M, Liu S D, et al. Cailiao Rechuli Xuebao/Transactions of Materials & Heat Treatment, 2016, 37(3), 101.
102 Sharma M M, Amateau M F, Eden T J. Acta Materialia, 2005, 53(10), 2919.
103 Xiong B Q, Zhang Y A, Zhu B H, et al. Materials Science Forum, 2005, 510, 2784.
104 Liu C Y, Ma M Z, Liu R P, et al. Materials Science and Engineering: A, 2016, 654, 436.
105 Liu C Y, Qu B, Ma Z Y, et al. Materials Science and Engineering: A, 2016, 657, 284.
106 Borodachenkova M, Barlat F, Wen W, et al. International Journal of Plasticity, 2015, 68, 150.
107 Straumal B B, Baretzky B, Mazilkin A A, et al. Acta Materialia, 2004, 52(15), 4469.
108 Purcek G, Saray O, Kucukomeroglu T, et al. Materials Science and Engineering: A, 2010, 527(15), 3480.
109 Iwahashi Y, Horita Z, Nemoto M, et al. Acta Materialia, 1997, 45(11), 4733.
110 Valiev R Z, Langdon T G. Progress in Materials Science, 2006, 51(7), 881.
111 Zheng L J, Chen C Q, Zhou T T, et al. Materials Characterization, 2002, 49(5), 455.
112 Málek P, Cieslar M, Islamgaliev R K. Journal of Alloys and Compounds, 2004, 378(1-2), 237.
113 Afifi M A, Wang Y C, Pereira P, et al. Materials Science and Engineering: A, 2018, 712, 146.
114 Jiang Y. Influence of heat treatment on microstructure and properties of Zn-Al alloys. Master's Thesis, Hefei University of Technology, China, 2013(in Chinese).
江宇. 热处理工艺对锌铝合金微观组织与性能的影响. 硕士学位论文, 合肥工业大学, 2013.
115 Sun H. Effect of alloying and heating treatment on properties of 7075 aluminum alloy. Master's Thesis, Zhengzhou University, China, 2016(in Chinese).
孙辉. 合金化和热处理对7075铝合金力学性能的影响. 硕士学位论文, 郑州大学, 2016.
116 Jiang H. Physical Testing and Chemical Analysis Part A: Physical Testing, 2016, 52(5), 315(in Chinese).
江河. 理化检验(物理分册), 2016, 52(5), 315.
117 Yu H P, Zhang S Z, Bai Y H, et al. Special Casting & Nonferrous Alloys, 2002(S1), 233(in Chinese).
于海朋, 张尚洲, 白彦华, 等. 特种铸造及有色合金, 2002(S1), 233.
118 Changjiang Nonferrous Metal Spot Market. China Nonferrous Metals, 2009(17), 71(in Chinese).
长江有色金属现货行情. 中国有色金属, 2009(17), 71.
[1] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[2] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[3] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[4] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[5] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[6] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[7] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[8] 郝思洁, 褚强, 李文亚, 杨夏炜, 邹阳帆. 电脉冲处理对金属材料组织、力学性能影响的研究进展[J]. 材料导报, 2023, 37(4): 21030039-9.
[9] 王彦明, 高晓红, 李萍, 王廷梅, 王齐华. 原子氧辐照对含苯并咪唑结构聚酰亚胺摩擦学性能影响研究[J]. 材料导报, 2023, 37(4): 21040187-7.
[10] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[11] 吴远东, 郑维爽, 李源遽, 都贝宁, 张兴儒, 李家龙, 于盛洋, 肖忆楠, 赖琛, 盛立远, 黄艺. 聚羟基脂肪酸酯(PHAs)基止血材料研究进展[J]. 材料导报, 2023, 37(3): 21010218-9.
[12] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[13] 邱玺, 高士鑫, 李权, 李垣明, 李文杰, 辛勇. 热管反应堆用钼铼合金的研究进展[J]. 材料导报, 2023, 37(2): 21020011-9.
[14] 杨正宏, 刘思佳, 吴凯, 于龙, 潘峰. 纤维增强磷酸镁水泥基复合材料研究进展[J]. 材料导报, 2023, 37(1): 20110150-7.
[15] 黄智恒, 薛松柏, 王博, 张帆, 龙伟民. Sm对SAl 4043铝合金焊丝的组织、性能及氢含量的影响[J]. 材料导报, 2023, 37(1): 21080231-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed