Please wait a minute...
材料导报  2023, Vol. 37 Issue (4): 21050158-6    https://doi.org/10.11896/cldb.21050158
  金属与金属基复合材料 |
横向交变磁场对铝合金电弧增材成形组织与性能的影响
李丹1, 王启伟1,*, 韩国峰2, 张保国3, 朱胜2, 李卫1,*
1 暨南大学先进耐磨蚀及功能材料研究院,广州 510632
2 陆军装甲兵学院再制造技术国家重点实验室,北京 100072
3 科技部科技评估中心,北京 100081
Effect of Transverse Alternating Magnetic Field on the Microstructure and Properties of Aluminum Alloy Arc Additive Forming
LI Dan1, WANG Qiwei1,*, HAN Guofeng2, ZHANG Baoguo3, ZHU Sheng2, LI Wei1,*
1 Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
2 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
3 Science and Technology Evaluation Center, Ministry of Science and Technology, Beijing 100081, China
下载:  全 文 ( PDF ) ( 21625KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为细化铝合金电弧增材成形组织晶粒、减少组织缺陷、提高熔覆层的力学性能,在电弧增材成形过程中耦合横向交变磁场制备了铝合金熔覆层,并对熔覆层微观组织结构和力学性能进行表征分析,研究了在横向交变磁场中励磁电流变化对熔覆层组织和性能的影响。结果表明:在磁场作用下,凝固组织中粗大柱状晶数量减少,等轴晶数量增多,晶粒尺寸细化。当励磁电流为11 A时,熔覆层截面平均显微硬度为83.9HV,较无磁场时提高近10%。当励磁电流为8 A时,在横、纵两方向上抗拉强度分别为275.7 MPa、254.3 MPa,平均延伸率分别为21.9%、26.2%,综合力学性能均高于未引入磁场。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李丹
王启伟
韩国峰
张保国
朱胜
李卫
关键词:  电弧增材制造  横向交变磁场  铝合金  显微组织  力学性能    
Abstract: In order to refine the grain size, reduce the defects and improve the mechanical properties of the deposited layer, the aluminum alloy deposited layer was prepared by coupling the transverse magnetic field during the arc additive forming process. The microstructure and mechanical properties of the deposited layer were characterized and analyzed, and the influence of the excitation current change on the microstructure and properties of the deposited layer in the transverse alternating magnetic field was studied. The results show that with the action of magnetic field, the number of columnar crystals and equiaxed crystals are decreased and increased respectively, and the grain size was refined. When the excitation current was 11 A, the microhardness of the deposited layer was 83.9HV on average, which was nearly 10% higher than that without magnetic field. When the excitation current was 8 A, the tensile strengths in transverse and longitudinal directions were 275.7 MPa and 254.3 MPa respectively, and the elongations were 21.9% and 26.2% on average, respectively. The comprehensive mechanical properties were higher than that without magnetic field.
Key words:  arc additive manufacturing    transverse alternating magnetic field    aluminum alloy    microstructure    mechanical properties
出版日期:  2023-02-25      发布日期:  2023-03-02
ZTFLH:  TG455  
基金资助: 广东省基础与应用基础研究基金项目(2020B1515120027);芜湖市重大科技项目(2021ZD08)
通讯作者:  * 王启伟,博士,暨南大学先进耐磨蚀及功能材料研究院研究员、硕士研究生导师。主要从事增材制造与再制造技术、功能材料设计与制备研究。主持和参研国家重点研发计划、军队装备预研领域基金等项目20余项,发表论文20余篇,被授权国家(国防)专利20余项,获军队科技进步一等奖2项,军队科技进步三等奖1项。wangqiwei@jnu.edu.cn
李卫,博士,暨南大学先进耐磨蚀及功能材料研究院教授、博士研究生导师。主要从事金属耐磨材料、耐蚀材料、金属基生物医用材料、材料加工工程、复合材料以及材料磨损与腐蚀等方面的研究、开发和生产技术工作。主持和承担了40余项国家和省部级科技项目以及科技成果工程化、产业化项目,获国家科技进步二等奖1次、国家科技进步三等奖1次。获得发明专利20项,出版专著2部,主编和参编行业技术手册3部,主持制修订国家标准10项。liweijn@aliyun.com   
作者简介:  李丹,2018年7月毕业于佳木斯大学,获得工学学士学位。现就读暨南大学先进耐磨蚀及功能材料研究院,研究方向为电弧增材制造。
引用本文:    
李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
LI Dan, WANG Qiwei, HAN Guofeng, ZHANG Baoguo, ZHU Sheng, LI Wei. Effect of Transverse Alternating Magnetic Field on the Microstructure and Properties of Aluminum Alloy Arc Additive Forming. Materials Reports, 2023, 37(4): 21050158-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050158  或          http://www.mater-rep.com/CN/Y2023/V37/I4/21050158
1 Gu J L. Study on microstructure and mechanical properties of additively manufactured Al-Cu-(Mg) alloys with the CMT process. Ph. D. Thesis, Northeastern University, China, 2016(in Chinese).
顾江龙. CMT工艺增材制造Al-Cu-(Mg)合金的组织与性能的研究. 博士学位论文, 东北大学, 2016.
2 Jiang H L, Yao J K, Yin F L. Hot Working Technology, 2018, 47(18), 25(in Chinese).
江宏亮, 姚巨坤, 殷凤良. 热加工工艺, 2018, 47(18), 25.
3 Liu Y B, Sun Q J, Jiang Y L, et al. Transactions of the China Welding Institution, 2014, 35(7), 1(in Chinese)
刘一搏, 孙清洁, 姜云禄, 等. 焊接学报, 2014, 35(7), 1.
4 Liu N. Research on Ti-6Al-4V shaped metal deposition by TIG welding with wire. Ph. D. Thesis, Harbin Institute of Technology, China, 2013(in Chinese).
刘宁. TC4钛合金TIG填丝堆焊成型技术研究. 博士学位论文, 哈尔滨工业大学, 2013.
5 Tian C L, Chen J L, Dong P, et al. Aerospace Manufacturing Technology, 2015(2), 57(in Chinese).
田彩兰, 陈济轮, 董鹏, 等. 航天制造技术, 2015(2), 57.
6 Ding J, Colegrove P, Mehnen J, et al. Computational Materials Science, 2011, 50(12), 3315.
7 Martina F, Mehnen J, Williams S W, et al. Journal of Materials Processing Technology, 2012, 212(6), 1377.
8 Li Q, Wang F D, Wang G Q, et al. Aeronautical Manufacturing Technology, 2018, 61(3), 74(in Chinese).
李权, 王福德, 王国庆, 等. 航空制造技术, 2018, 61(3), 74.
9 Guo Y Q, Zhu X F, Yang Y, et al. Forging & Stamping Technology, 2015, 40(3), 1(in Chinese).
郭玉琴, 朱新峰, 杨艳, 等. 锻压技术, 2015, 40(3), 1.
10 Liu Y H, Li B C. Heilongjiang Science and Technology Information, 2007(4), 18(in Chinese).
刘延辉, 李宝成. 黑龙江科技信息, 2007(4), 18.
11 Staley J T, Liu J. Advanced Materials and Processes, 1997, 152(4), 17.
12 Zhang B, Wang C, Wang Z, et al. Journal of Materials Processing Technology, 2018, 267, 167.
13 Liu T Y. Study on manufacturing process optimization and microstructure and properties of aluminum alloy arc addition. Master's Thesis, Shen-yang University of Technology, China, 2019(in Chinese).
刘天羽. 铝合金电弧增材制造工艺优化及组织性能研究. 硕士学位论文, 沈阳工业大学, 2019.
14 Wang Q W, Zhu S, Chen C L, et al. China Surface Engineering, 2018, 31(6), 1(in Chinese).
王启伟, 朱胜, 陈春良, 等. 中国表面工程, 2018, 31(6), 1.
15 Bachmann M, Avilov V, Gumenyuk A, et al. International Journal of Heat & Mass Transfer, 2013, 60, 309.
16 Tang G P, Chen J M, Liu J. Welding Technology, 2006, 35(5), 3(in Chinese).
汤光平, 陈金明, 刘俊. 焊接技术, 2006, 35(5), 3.
17 Xu K, Hou J B, Liu Y X, et al. Hot Working Technology, 2019, 48(7), 69(in Chinese).
许凯, 侯击波, 刘雅鑫, 等. 热加工工艺, 2019, 48(7), 69.
18 Liu C J. Study on structure and capabilities of nickel-based deposit alloy in inverter controlled longitudinal magnetic field. Master's Thesis, Shenyang University of Technology, China, 2005(in Chinese).
刘长军. 镍基堆焊合金在逆变交流纵向磁控下组织性能的研究. 硕士学位论文, 沈阳工业大学, 2005.
19 Jia H. The research of weldability of magnesium alloys under magnetic field. Master's Thesis, Shenyang University of Technology, China, 2010(in Chinese).
贾华. 磁场作用下镁合金焊接性的研究. 硕士学位论文, 沈阳工业大学, 2010.
20 Che X P. Study on the welding test of Al alloy and simulation in MIG arc welding with longitudinal magnetic field. Master's Thesis, Shenyang University of Technology, China, 2007(in Chinese).
车小平. 纵向磁场作用下铝合金MIG焊接实验研究及数值模拟. 硕士学位论文, 沈阳工业大学, 2007.
21 Bachmann M, Avilov V, Gumenyuk A, et al. Journal of Materials Processing Technology, 2014, 214(3), 578.
22 Yang C G, Liu G P, Chen Y H, et al. Advanced Materials Research, 2011, 391, 1225.
23 Liu Z J, Li L C, Wu X J, et al. Journal of Shenyang University of Technology, 2013, 35(1), 31(in Chinese).
刘政军, 李乐成, 武小娟, 等. 沈阳工业大学学报, 2013, 35(1), 31.
24 Wang Y, Wu T G . Journal of Chinese Society for Corrosion and Protection, 2005, 25(4), 218(in Chinese).
王月, 吴庭翱. 中国腐蚀与防护学报, 2005, 25(4), 218.
25 Su Y H, Liu Z J, Wang Y, et al. Transactions of the China Welding Institution, 2007, 28(5), 45(in Chinese).
苏允海, 刘政军, 王玉, 等. 焊接学报, 2007, 28(5), 45.
26 Liu Z J, Liu J D, Mou L J, et al. Transactions of the China Welding Institution, 2001, 22(5), 73(in Chinese).
刘政军, 刘景铎, 牟力军, 等. 焊接学报, 2001, 22(5), 73.
27 Loucif A, Figueiredo R B, Baudin T, et al. Materials Science & Engineering A, 2012, 532(15), 139.
28 Wang X M, Chang Q, Zhao Y, et al. China Surface Engineering, 2019, 157(4), 139(in Chinese).
王晓明, 常青, 赵阳, 等. 中国表面工程, 2019, 157(4), 139.
[1] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[2] 郝思洁, 褚强, 李文亚, 杨夏炜, 邹阳帆. 电脉冲处理对金属材料组织、力学性能影响的研究进展[J]. 材料导报, 2023, 37(4): 21030039-9.
[3] 蔡达, 王立世, 胡心彬. AA5052铝合金/AZ31B镁合金搅拌摩擦焊接头的腐蚀行为研究[J]. 材料导报, 2023, 37(4): 21040318-7.
[4] 王彦明, 高晓红, 李萍, 王廷梅, 王齐华. 原子氧辐照对含苯并咪唑结构聚酰亚胺摩擦学性能影响研究[J]. 材料导报, 2023, 37(4): 21040187-7.
[5] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[6] 吴远东, 郑维爽, 李源遽, 都贝宁, 张兴儒, 李家龙, 于盛洋, 肖忆楠, 赖琛, 盛立远, 黄艺. 聚羟基脂肪酸酯(PHAs)基止血材料研究进展[J]. 材料导报, 2023, 37(3): 21010218-9.
[7] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[8] 邱玺, 高士鑫, 李权, 李垣明, 李文杰, 辛勇. 热管反应堆用钼铼合金的研究进展[J]. 材料导报, 2023, 37(2): 21020011-9.
[9] 杨东辉, 唐帅, 吴子彬, 秦克, 张海涛, 崔建忠, Hiromi Nagaumi. 高锌铝合金合金化和加工工艺的研究现状及发展趋势[J]. 材料导报, 2023, 37(2): 21010126-6.
[10] 杨正宏, 刘思佳, 吴凯, 于龙, 潘峰. 纤维增强磷酸镁水泥基复合材料研究进展[J]. 材料导报, 2023, 37(1): 20110150-7.
[11] 肖述广, 谢志雄, 陈卓, 陈琪, 董仕节, 解剑英. 薄壁3003铝合金管高频感应焊焊接接头微观组织及力学性能研究[J]. 材料导报, 2023, 37(1): 21080147-6.
[12] 黄智恒, 薛松柏, 王博, 张帆, 龙伟民. Sm对SAl 4043铝合金焊丝的组织、性能及氢含量的影响[J]. 材料导报, 2023, 37(1): 21080231-6.
[13] 薛海涛, 李涛, 郭卫兵, 陈翠欣, 赵江龙, 丁志杰. 钎焊参数对Al2O3陶瓷/304不锈钢接头组织和性能的影响[J]. 材料导报, 2023, 37(1): 21090089-5.
[14] 刘忠柱, 赵伟, 潘玮, 李睢水, 郑国强, 李倩. 多壁碳纳米管改性等规聚丙烯复合材料的结构及性能研究[J]. 材料导报, 2023, 37(1): 20100004-6.
[15] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed