Effect of Transverse Alternating Magnetic Field on the Microstructure and Properties of Aluminum Alloy Arc Additive Forming
LI Dan1, WANG Qiwei1,*, HAN Guofeng2, ZHANG Baoguo3, ZHU Sheng2, LI Wei1,*
1 Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China 2 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China 3 Science and Technology Evaluation Center, Ministry of Science and Technology, Beijing 100081, China
Abstract: In order to refine the grain size, reduce the defects and improve the mechanical properties of the deposited layer, the aluminum alloy deposited layer was prepared by coupling the transverse magnetic field during the arc additive forming process. The microstructure and mechanical properties of the deposited layer were characterized and analyzed, and the influence of the excitation current change on the microstructure and properties of the deposited layer in the transverse alternating magnetic field was studied. The results show that with the action of magnetic field, the number of columnar crystals and equiaxed crystals are decreased and increased respectively, and the grain size was refined. When the excitation current was 11 A, the microhardness of the deposited layer was 83.9HV on average, which was nearly 10% higher than that without magnetic field. When the excitation current was 8 A, the tensile strengths in transverse and longitudinal directions were 275.7 MPa and 254.3 MPa respectively, and the elongations were 21.9% and 26.2% on average, respectively. The comprehensive mechanical properties were higher than that without magnetic field.
李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
LI Dan, WANG Qiwei, HAN Guofeng, ZHANG Baoguo, ZHU Sheng, LI Wei. Effect of Transverse Alternating Magnetic Field on the Microstructure and Properties of Aluminum Alloy Arc Additive Forming. Materials Reports, 2023, 37(4): 21050158-6.
1 Gu J L. Study on microstructure and mechanical properties of additively manufactured Al-Cu-(Mg) alloys with the CMT process. Ph. D. Thesis, Northeastern University, China, 2016(in Chinese). 顾江龙. CMT工艺增材制造Al-Cu-(Mg)合金的组织与性能的研究. 博士学位论文, 东北大学, 2016. 2 Jiang H L, Yao J K, Yin F L. Hot Working Technology, 2018, 47(18), 25(in Chinese). 江宏亮, 姚巨坤, 殷凤良. 热加工工艺, 2018, 47(18), 25. 3 Liu Y B, Sun Q J, Jiang Y L, et al. Transactions of the China Welding Institution, 2014, 35(7), 1(in Chinese) 刘一搏, 孙清洁, 姜云禄, 等. 焊接学报, 2014, 35(7), 1. 4 Liu N. Research on Ti-6Al-4V shaped metal deposition by TIG welding with wire. Ph. D. Thesis, Harbin Institute of Technology, China, 2013(in Chinese). 刘宁. TC4钛合金TIG填丝堆焊成型技术研究. 博士学位论文, 哈尔滨工业大学, 2013. 5 Tian C L, Chen J L, Dong P, et al. Aerospace Manufacturing Technology, 2015(2), 57(in Chinese). 田彩兰, 陈济轮, 董鹏, 等. 航天制造技术, 2015(2), 57. 6 Ding J, Colegrove P, Mehnen J, et al. Computational Materials Science, 2011, 50(12), 3315. 7 Martina F, Mehnen J, Williams S W, et al. Journal of Materials Processing Technology, 2012, 212(6), 1377. 8 Li Q, Wang F D, Wang G Q, et al. Aeronautical Manufacturing Technology, 2018, 61(3), 74(in Chinese). 李权, 王福德, 王国庆, 等. 航空制造技术, 2018, 61(3), 74. 9 Guo Y Q, Zhu X F, Yang Y, et al. Forging & Stamping Technology, 2015, 40(3), 1(in Chinese). 郭玉琴, 朱新峰, 杨艳, 等. 锻压技术, 2015, 40(3), 1. 10 Liu Y H, Li B C. Heilongjiang Science and Technology Information, 2007(4), 18(in Chinese). 刘延辉, 李宝成. 黑龙江科技信息, 2007(4), 18. 11 Staley J T, Liu J. Advanced Materials and Processes, 1997, 152(4), 17. 12 Zhang B, Wang C, Wang Z, et al. Journal of Materials Processing Technology, 2018, 267, 167. 13 Liu T Y. Study on manufacturing process optimization and microstructure and properties of aluminum alloy arc addition. Master's Thesis, Shen-yang University of Technology, China, 2019(in Chinese). 刘天羽. 铝合金电弧增材制造工艺优化及组织性能研究. 硕士学位论文, 沈阳工业大学, 2019. 14 Wang Q W, Zhu S, Chen C L, et al. China Surface Engineering, 2018, 31(6), 1(in Chinese). 王启伟, 朱胜, 陈春良, 等. 中国表面工程, 2018, 31(6), 1. 15 Bachmann M, Avilov V, Gumenyuk A, et al. International Journal of Heat & Mass Transfer, 2013, 60, 309. 16 Tang G P, Chen J M, Liu J. Welding Technology, 2006, 35(5), 3(in Chinese). 汤光平, 陈金明, 刘俊. 焊接技术, 2006, 35(5), 3. 17 Xu K, Hou J B, Liu Y X, et al. Hot Working Technology, 2019, 48(7), 69(in Chinese). 许凯, 侯击波, 刘雅鑫, 等. 热加工工艺, 2019, 48(7), 69. 18 Liu C J. Study on structure and capabilities of nickel-based deposit alloy in inverter controlled longitudinal magnetic field. Master's Thesis, Shenyang University of Technology, China, 2005(in Chinese). 刘长军. 镍基堆焊合金在逆变交流纵向磁控下组织性能的研究. 硕士学位论文, 沈阳工业大学, 2005. 19 Jia H. The research of weldability of magnesium alloys under magnetic field. Master's Thesis, Shenyang University of Technology, China, 2010(in Chinese). 贾华. 磁场作用下镁合金焊接性的研究. 硕士学位论文, 沈阳工业大学, 2010. 20 Che X P. Study on the welding test of Al alloy and simulation in MIG arc welding with longitudinal magnetic field. Master's Thesis, Shenyang University of Technology, China, 2007(in Chinese). 车小平. 纵向磁场作用下铝合金MIG焊接实验研究及数值模拟. 硕士学位论文, 沈阳工业大学, 2007. 21 Bachmann M, Avilov V, Gumenyuk A, et al. Journal of Materials Processing Technology, 2014, 214(3), 578. 22 Yang C G, Liu G P, Chen Y H, et al. Advanced Materials Research, 2011, 391, 1225. 23 Liu Z J, Li L C, Wu X J, et al. Journal of Shenyang University of Technology, 2013, 35(1), 31(in Chinese). 刘政军, 李乐成, 武小娟, 等. 沈阳工业大学学报, 2013, 35(1), 31. 24 Wang Y, Wu T G . Journal of Chinese Society for Corrosion and Protection, 2005, 25(4), 218(in Chinese). 王月, 吴庭翱. 中国腐蚀与防护学报, 2005, 25(4), 218. 25 Su Y H, Liu Z J, Wang Y, et al. Transactions of the China Welding Institution, 2007, 28(5), 45(in Chinese). 苏允海, 刘政军, 王玉, 等. 焊接学报, 2007, 28(5), 45. 26 Liu Z J, Liu J D, Mou L J, et al. Transactions of the China Welding Institution, 2001, 22(5), 73(in Chinese). 刘政军, 刘景铎, 牟力军, 等. 焊接学报, 2001, 22(5), 73. 27 Loucif A, Figueiredo R B, Baudin T, et al. Materials Science & Engineering A, 2012, 532(15), 139. 28 Wang X M, Chang Q, Zhao Y, et al. China Surface Engineering, 2019, 157(4), 139(in Chinese). 王晓明, 常青, 赵阳, 等. 中国表面工程, 2019, 157(4), 139.