Please wait a minute...
材料导报  2023, Vol. 37 Issue (1): 21080147-6    https://doi.org/10.11896/cldb.21080147
  金属与金属基复合材料 |
薄壁3003铝合金管高频感应焊焊接接头微观组织及力学性能研究
肖述广1, 谢志雄1,*, 陈卓1, 陈琪1, 董仕节1,2, 解剑英3
1 湖北工业大学绿色轻工材料湖北省重点实验室,武汉 430068
2 武汉轻工大学机械工程学院,武汉 430023
3 武汉博金新材料科技有限公司,武汉 430058
Study on Microstructure and Mechanical Properties of High Frequency Induction Welded Joint of Thin Walled 3003 Aluminum Alloy Tube
XIAO Shuguang1, XIE Zhixiong1,*, CHEN Zhuo1, CHEN Qi1, DONG Shijie1,2, XIE Jianying3
1 Hubei Key Laboratory of Green Light Industrial Materials, Hubei University of Technology, Wuhan 430068, China
2 School of Mechanical Engineering,Wuhan Polytechnic University,Wuhan 430023,China
3 Wuhan Bojin New Materials Technology Co., Ltd., Wuhan 430058, China
下载:  全 文 ( PDF ) ( 32481KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用高频感应焊接技术对壁厚为0.28 mm的3003铝合金进行焊接,研究了焊接接头的微观组织和力学性能。结果表明,焊接接头晶粒细小,是焊接过程中感应加热与挤压同步进行,局部晶粒发生塑性变形从而抑制了晶粒长大所致;焊接接头熔合区呈上下宽、中间窄的窄腰状,宽度为6~10 μm,熔融区呈细腰鼓形,单侧宽度为24~49 μm,其相邻两侧的热影响区部分发生再结晶,宽度为115~127 μm;断口形貌显示焊接接头断裂类型为以韧性断裂为主的韧脆混合型断裂,其抗拉强度为242 MPa,达到带材的91%,伸长率为15%,略低于带材(23%);焊接接头各区域硬度值呈M形对称分布,熔融区与热影响区硬度值明显高于母材区,熔融区最高,达到85.27HV,热影响区约为79.33HV,熔合区硬度值最低,为55.85HV。与母材相比,焊接接头强度和硬度分布规律与各区域晶粒大小和第二相种类及分布有关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖述广
谢志雄
陈卓
陈琪
董仕节
解剑英
关键词:  铝合金  高频感应焊  焊接接头  显微组织  显微硬度    
Abstract: The microstructure and mechanical properties of high frequency induction welding joints of 3003 aluminum alloy with wall thickness of 0.28 mm were studied. The results show that the grain size of the welded joint is fine, which is caused by the simultaneous induction heating and extrusion in the welding process, resulting in the plastic deformation of local grains, thereby inhibiting the grain growth. The fusion zone is a narrow waist shape with a width of 6—10 μm, the melting zone with unilateral width of 24—49 μm is thin waist drum-shaped, and the heat affected zone on adjacent sides is partially recrystallized, with width of 115—127 μm. The fracture morphology shows that the fracture type of the welded joint is ductile brittle mixed fracture dominated by ductile fracture. Its tensile strength is 242 MPa, which reaches 91% of the strip, and the elongation is 15%, which is slightly lower than that of the strip (23%). The hardness values of each region of the welded joint were distributed in M-shaped symmetry. The hardness values of the melting zone and the heat affected zone were significantly higher than those of the base metal zone. The hardness value of the melting zone was the highest, reaching 85.27HV, and that of the heat affected zone was about 79.33HV. The hardness value of the fusion zone was the lowest, only 55.85HV. Compared with the base metal, the strength and hardness distribution of welded joints are related to the grain size and the type and distribution of the second phase in each region.
Key words:  aluminum alloy    high frequency induction welding    welded joint    microstructure    microhardness
出版日期:  2023-01-10      发布日期:  2023-01-31
ZTFLH:  TG456.9  
基金资助: 国家自然科学基金(51771071)
通讯作者:  * 谢志雄,工学博士,湖北工业大学讲师、硕士研究生导师、材料成型及控制工程系副主任兼党支部书记,2012 年6 月于上海交通大学材料加工工程专业获工学博士学位。迄今为止发表论文20 余篇,其中SCI/EI 收录论文15 余篇,主持和参与湖北省自然科学基金项目、国家自然科学基金项目。主要从事高强高导铜合金的制备、组织性能和强化机理,产氢铝合金的制备、产氢机理,超薄壁钛管、不锈钢管、铝合金管的高频感应焊接研究。xzx@hbut.edu.cn   
作者简介:  肖述广,2019年6月毕业于湖北汽车工业学院科技学院,获得工学学士学位。现为湖北工业大学材料与化学工程学院硕士研究生,在谢志雄老师的指导下进行研究,目前的主要研究领域为薄壁3003铝合金的高频感应焊接。
引用本文:    
肖述广, 谢志雄, 陈卓, 陈琪, 董仕节, 解剑英. 薄壁3003铝合金管高频感应焊焊接接头微观组织及力学性能研究[J]. 材料导报, 2023, 37(1): 21080147-6.
XIAO Shuguang, XIE Zhixiong, CHEN Zhuo, CHEN Qi, DONG Shijie, XIE Jianying. Study on Microstructure and Mechanical Properties of High Frequency Induction Welded Joint of Thin Walled 3003 Aluminum Alloy Tube. Materials Reports, 2023, 37(1): 21080147-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080147  或          http://www.mater-rep.com/CN/Y2023/V37/I1/21080147
1 Yang S J, Dai S L. Materials Reports, 2005, 19(2), 76(in Chinese).
杨守杰, 戴圣龙. 材料导报, 2005, 19(2), 76.
2 Kawashima T. In: The Fourth International Symposium. Tokyo, 1962, pp.137.
3 Masahito Katsukura. Light Metal Age, 2001, 59(3-4), 70.
4 Krzymień A, Krzymień P. Journal of KONES, 2007, 14(4), 233.
5 Graf A. Materials, design and manufacturing for lightweight vehicles(Second Edition), Pankaj Mallick, ed., Elsevier, Netherlands, 2020, pp.97.
6 Ambriz R R, Mayagoitia V. Recent trends in processing and degradation of aluminium alloys, Ahmad Z, ed., InTech, Croatia, 2010, pp. 63.
7 Hailat M M, Mian A, Chaudhury Z A, et al. Microsystem Technology, 2012, 18(1), 103.
8 Huang Y M, Zhang Z F, Lv N, et al. In: International Conference on Robotic Welding, Intelligence and Automation. Shanghai, China, 2014, pp. 133.
9 Kim S S, Jeong Y J, Park J M, et al. Journal of Mechanical Science and Technology, 2013, 27(10), 2935.
10 Li Y W, Zou W F, Lee B Y, et al. The International Journal of Advanced Manufacturing Technology, 2020, 109(5-6), 1207.
11 Yan P. High frequency induction welding and post-welding heat treatment of steel pipes. Ph. D. Thesis, Cambridge University, UK, 2011.
12 Baake E, Nikanorov A, Ebel W. In: 2019 XXI International Conference Complex Systems: Control and Modeling Problems, Samara, 2019, pp. 199.
13 Zaffaroni G G B, Mishina O V, Ciucania U M, et al. Materials Characterization, 2021, 173, 110939.
14 Ghaffarpour M, Akbari D, Naeini H M. Journal of Materials: Design and Applications, 2021, 235(3), 597.
15 Li Z Q, Liu J P. Journal of Hubei University of Automotive Technology, 2003, 17(3), 21(in Chinese).
李志强, 刘景平. 湖北汽车工业学院学报, 2003, 17(3), 21.
16 He J Y. Study on welding process and quality control technology of the mill used to weld extra thin-walled tube with high-frequency welding. Master’s Thesis, Xi’an Shiyou University, China, 2009(in Chinese).
贺继有. 特薄壁高频焊管机组焊接工艺及质量控制技术研究. 硕士学位论文, 西安石油大学, 2009.
17 郭海霞, 张欣耀, 袁晓冬. 中国专利, CN201811325953. X, 2018.
18 Cao G F, Cao L Z. Welded Pipe and Tube, 2020, 43(4), 61(in Chinese).
曹国富, 曹丽珠. 焊管, 2020, 43(4), 61.
19 Singh R. Pipeline and Gas Journal, 2013, 240(10), 75.
20 Zhao B B, Zhao M M, Jang X L, et al. Aluminium Fabrication, 2020(4), 7(in Chinese).
赵斌斌, 赵茂密, 姜小龙, 等. 铝加工, 2020(4), 7.
21 Liu Y, Cheng Y F. Materials and Corrosion, 2010, 61(3), 211.
22 Tang C L, Wen J Q, Xue X L, et al. Special Casting and Nonferrous Alloys, 2018, 38(6), 596(in Chinese).
唐超兰, 温竟青, 薛喜丽, 等. 特种铸造及有色合金, 2018, 38(6), 596.
23 Li G Q, Zuo X R. Transactions of Materials and Heat Treatment, 2007, 28(3), 63(in Chinese).
李广钦, 左秀荣. 材料热处理学报, 2007, 28(3), 63.
[1] 黄智恒, 薛松柏, 王博, 张帆, 龙伟民. Sm对SAl 4043铝合金焊丝的组织、性能及氢含量的影响[J]. 材料导报, 2023, 37(1): 21080231-6.
[2] 薛海涛, 李涛, 郭卫兵, 陈翠欣, 赵江龙, 丁志杰. 钎焊参数对Al2O3陶瓷/304不锈钢接头组织和性能的影响[J]. 材料导报, 2023, 37(1): 21090089-5.
[3] 王艺橦, 潘栋, 侯华兴, 郭庆涛, 李天怡, 厉文墨, 肖玉宝, 江坤. 高能电脉冲处理对金属材料强化和增韧作用影响的研究新进展[J]. 材料导报, 2022, 36(Z1): 21080093-7.
[4] 曹召勋, 王军, 刘辰, 韩俊刚, 王荫洋, 钟亮, 王荣, 徐永东, 朱秀荣. 铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金热变形行为研究[J]. 材料导报, 2022, 36(Z1): 21120147-5.
[5] 曾广凯, 崔君阁, 王雨辰, 陈凯伦, 潘森鑫, 潘利文, 胡治流. Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能[J]. 材料导报, 2022, 36(8): 21020142-5.
[6] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[7] 孙玉玲, 马宏昊, 沈兆武, 杨明, 田启超. 槽型结构316L/CuCrZr真空熔铸复合技术的研究[J]. 材料导报, 2022, 36(23): 21050179-5.
[8] 张华炜, 刘悦, 范同祥. 铸造耐热铝合金的研究进展及展望[J]. 材料导报, 2022, 36(2): 20120048-9.
[9] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[10] 卢博, 李安敏, 饶宇, 汪林忠, 左天辰, 胡杨. 稀土Y及热处理对6016铝合金组织与性能的影响[J]. 材料导报, 2022, 36(19): 21070110-8.
[11] 王超, 陈琪, 肖述广, 董仕节, 谢志雄, 罗平, 解剑英. 316奥氏体不锈钢高频感应焊接技术及缺陷形成机理[J]. 材料导报, 2022, 36(19): 21020063-5.
[12] 葛晓宇, 闫二虎, 陈运灿, 黄仁君, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe渗氢合金成分优化设计和氢传输性能研究[J]. 材料导报, 2022, 36(18): 21060218-6.
[13] 李萧, 胡水平, 蔡钰. 固溶温度对碳烯/6061铝基复合材料轧制薄板组织与力学性能的影响[J]. 材料导报, 2022, 36(18): 21010123-6.
[14] 于晓全, 樊丁, 黄健康. 焊丝成分对铝/钢电弧辅助激光熔钎焊接头组织及力学性能的影响[J]. 材料导报, 2022, 36(18): 21050207-5.
[15] 龚玉玲, 武美萍, 缪小进, 崔宸. 扫描速度对激光熔覆CeO2/Ni60A涂层耐腐蚀性能的影响[J]. 材料导报, 2022, 36(18): 21050169-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed