Please wait a minute...
材料导报  2022, Vol. 36 Issue (18): 21010123-6    https://doi.org/10.11896/cldb.21010123
  金属与金属基复合材料 |
固溶温度对碳烯/6061铝基复合材料轧制薄板组织与力学性能的影响
李萧1, 胡水平2,*, 蔡钰3
1 北京科技大学国家材料服役安全科学中心,北京 100083
2 北京科技大学工程技术研究院,北京 100083
3 东莞新能源科技有限公司,广东 东莞 523808
Effect of Solution Temperature on Microstructure and Mechanical Properties of Hot Rolled Carbene/6061 Aluminum Matrix Composites
LI Xiao1, HU Shuiping2,*, CAI Yu3
1 National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
2 Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
3 Amperex Technology Limited, Dongguan 523808,Guangdong, China
下载:  全 文 ( PDF ) ( 8927KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探索碳烯/6061铝基复合材料轧后固溶生产工艺,本工作对热轧薄板试样进行(460~520 ℃×1 h)固溶和(180 ℃×4 h)时效处理,并利用X射线衍射仪(XRD)、扫描电镜(SEM)、背散射电子衍射仪(EBSD)、透射电镜(TEM)和力学拉伸等测试方法,研究不同固溶温度对复合材料热轧板组织和力学性能的影响。结果表明:固溶时效处理后,碳烯/6061铝合金热轧板组织得到一定细化,同时其力学性能得到显著改善;其中,固溶温度为480 ℃时最有利于复合材料热轧板获得更加细小均匀的组织和更优异的综合力学性能,其屈服强度、拉伸强度和延伸率较未热处理板材分别提高了7.1%、10.8%和51.3%;当固溶温度高于500 ℃时,大量的脆性碳化物(Al4C3)生成,导致材料力学性能下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李萧
胡水平
蔡钰
关键词:  固溶温度  力学性能  显微组织  碳烯增强相    
Abstract: In order to study solution treatment process for hot rolled carbene/6061 aluminum-based matrix composites, solution treatment (460—520 ℃×1 h) and aging treatment (180 ℃×4 h) were applied to the hot rolled composite sheets in this work. Using XRD, SEM, EBSD, TEM and tensile testing, the combined effects of solution temperature on the microstructure and mechanical properties were studied. The results show that solution and aging treatments effectively promote grain size reduction and significant mechanical properties improvement for the hot rolled compo-sites sheet. 480 ℃ is proved to be the optimized solution temperature, which is favorable for carbene/6061 aluminum alloy sheet to acquire refined uniform microstructure and superior mechanical properties, with its yield strength, ultimate tensile strength and elongation reaching the hig-hest values, 7.1%, 10.8% and 51.3% higher than the as-received condition respectively. However, when the solution temperature is higher than 500 ℃, a large amount of carbides (Al4C3) is obtained, resulting in the reduction of mechanical properties of materials.
Key words:  solution temperature    mechanical property    microstructure    carbene reinforcing phase
收稿日期:  2202-09-25      出版日期:  2022-09-25      发布日期:  2022-09-26
ZTFLH:  TG146.22  
基金资助: 国家“十三五”重点研发计划(2016YFB0700300); 国家自然科学基金联合基金(U1837602)
通讯作者:  *husp@nercar.ustb.edu.cn   
作者简介:  李萧,北京科技大学工程师。2006年7月毕业于华南理工大学,获得材料加工专业硕士学位;2010年1月毕业于北京科技大学,获得材料学专业博士学位。2010年4月至2012年9月进入北京科技大学博士后工作站,之后相继加入北京科技大学工程技术研究院和国家材料服役安全科学中心实验中心部门工作至今。主要从事材料微观组织、结构和取向(织构)的表征与分析等方面的研究工作。在国内外学术期刊上发表论文17篇,授权专利2项。胡水平,北京科技大学副研究员。1992年毕业于北京科技大学,获得硕士学位;2008年毕业于北京科技大学,获得博士学位。主要研究方向是金属材料的成形及热处理工艺、机电液一体化。发表学术论文50余篇,获发明专利15项、中国有色行业协会一等奖1项、中国金属行业协会二等奖1项。
引用本文:    
李萧, 胡水平, 蔡钰. 固溶温度对碳烯/6061铝基复合材料轧制薄板组织与力学性能的影响[J]. 材料导报, 2022, 36(18): 21010123-6.
LI Xiao, HU Shuiping, CAI Yu. Effect of Solution Temperature on Microstructure and Mechanical Properties of Hot Rolled Carbene/6061 Aluminum Matrix Composites. Materials Reports, 2022, 36(18): 21010123-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010123  或          http://www.mater-rep.com/CN/Y2022/V36/I18/21010123
1 Zhang D, Zhang G D, Li Z Q. Materials China, 2010, 29(4), 1(in Chinese).
张荻, 张国定, 李志强. 中国材料进展, 2010, 29(4), 1.
2 Surappa M K. Sadhana, 2003, 28, 319.
3 Zeng X H, Xu R, Tan Z Q,et al. Materials China, 2015, 34(6), 417(in Chinese).
曾星华, 徐润, 谭占秋,等. 中国材料进展, 2015, 34(6), 417.
4 Jia T Q, Yang B, Du G X,et al. Special Casting and Non-Ferrous Alloys, 2018, 38(12), 1348(in Chinese).
贾天琪, 杨斌, 杜更新,等. 特种铸造及有色合金, 2018, 38(12), 1348.
5 Tjong S C. Materials Science and Engineering: R: Reports, 2013, 74(10), 281.
6 Li Z, Guo Q, Li Z Q,et al. Nano Letters, 2015, 15(12), 8077.
7 Xavior A M, Kumar P H G. Materials Today Proceedings, 2017, 4(2), 3334.
8 de Volder M F L, Tawfick S H, Baughman R H,et al. Science, 2013, 339 (6119), 535.
9 Tewari A, Böhm S, Gandla S,et al. Chemistry of Flat Materials, 2017, 4, 33.
10 Khan M, Rehman A, Aziz T,et al. Materials Science and Engineering A, 2017, 696, 552.
11 Zhang H F, Zheng Z Q, Zhong S,et al. The Chinese Journal of Nonferrous Metals, 2012, 22(4), 1025(in Chinese).
张海锋,郑子樵, 钟申,等. 中国有色金属学报, 2012, 22(4), 1025.
12 Marioara C D, Anderson S J, Jansen J,et al. Acta Materialia, 2003, 51(3), 789.
13 Wang X L, Yu L L, Zhao Y J,et al. Light Alloy Fabrication Technology, 2011, 39(2), 25(in Chinese).
王雪玲, 于莉莉, 赵永军,等. 轻合金加工技术, 2011, 39(2), 25.
14 Xing L, Li W L, Xia C,et al. Journal of Nanchang Hangkong University: Natural Sciences, 2013, 27(1), 14(in Chinese).
邢丽, 李文龙, 夏春,等. 南昌航空大学学报: 自然科学版, 2013, 27(1), 14.
15 Yan S J, Yang C, Hong Q H,et al. Material Engineering, 2014(4), 1(in Chinese).
燕绍九, 扬程, 洪起虎,等. 材料工程, 2014(4), 1.
16 Khan M, Ud-Din R, Wadood A,et al. Journal of Alloys and Compounds, 2019, 222(3), 4.
17 Arami H, Simchi A. Materials Science and Engineering A, 2007, 464(1-2), 225.
18 Zeng Q B. Journal of Applied Polymer Science, 1998, 70(1), 177.
19 Desal A, Haque M. Thin-Walled Structures, 2005, 43(11), 1787.
20 Landry K, Kalogeropoulou S, Eustahotpoulos N. Materials Science and Engineering A, 1998, 254, 99.
21 Tham L M, Gupta M, Cheng L. Atca Materialia, 2001,49, 3243.
22 Miracle D B, Donaldson S L. ASM handbook, ASM International, USA, 2001.
23 Rodriguez-Reyes M, Pech-Canul M I, Parga-Torres J R,et al. Ceramics International, 2011, 37(7), 2719.
24 Nandy S, Ghosh N, Ghosh D, et al. Ceramics International, 2006, 32, 163.
[1] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[2] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[3] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[4] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[5] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[6] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[7] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[8] 王艺橦, 潘栋, 侯华兴, 郭庆涛, 李天怡, 厉文墨, 肖玉宝, 江坤. 高能电脉冲处理对金属材料强化和增韧作用影响的研究新进展[J]. 材料导报, 2022, 36(Z1): 21080093-7.
[9] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[10] 曹召勋, 王军, 刘辰, 韩俊刚, 王荫洋, 钟亮, 王荣, 徐永东, 朱秀荣. 铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金热变形行为研究[J]. 材料导报, 2022, 36(Z1): 21120147-5.
[11] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[12] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[13] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[14] 曾广凯, 崔君阁, 王雨辰, 陈凯伦, 潘森鑫, 潘利文, 胡治流. Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能[J]. 材料导报, 2022, 36(8): 21020142-5.
[15] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed