Please wait a minute...
材料导报  2022, Vol. 36 Issue (9): 21020104-7    https://doi.org/10.11896/cldb.21020104
  金属与金属基复合材料 |
不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为
李伟1,2, 曹睿1,2,*, 闫英杰1,2
1 兰州理工大学有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州理工大学材料科学与工程学院,兰州 730050
Microstructure, Properties and Tensile Fracture Behavior of Powder Metallurgy Decorative Pattern Steel in Different Heat Treatments
LI Wei1,2, CAO Rui1,2,*, YAN Yingjie1,2
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 10223KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 粉末冶金花纹钢因表面漂亮的花纹以及优异的力学性能而广泛应用于各种刀具材料中。本工作以鱼骨花纹纹路的粉末冶金花纹钢为研究对象,通过SEM、EDS、XRD、硬度试验、拉伸试验、弯曲试验、原位拉伸试验研究了两种热处理状态下粉末冶金花纹钢的组织、性能及拉伸断裂行为。结果表明:花纹纹路由C含量较高的黑色RWL34和C含量相对较低的白色PMC27马氏体不锈钢组成。淬火态和退火态基体组织分别为马氏体和铁素体组织,析出相均为以Cr为主的M23C6型碳化物。淬火态粉末冶金花纹钢的力学性能优异,拥有高强度的同时兼顾良好的韧性。在拉伸应力作用下,两种热处理态下粉末冶金花纹钢均为M23C6碳化物优先开裂,裂纹主要在RWL34条带沿着碳化物边界扩展,众多裂纹汇集形成主裂纹,直到断裂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李伟
曹睿
闫英杰
关键词:  粉末冶金花纹钢  微观组织  M23C6碳化物  力学性能  碳化物开裂    
Abstract: Powder metallurgy decorative pattern steel is widely used in various tool materials because of its beautiful surface pattern and excellent mechanical properties. In this work, the powder metallurgy decorative pattern steel with herringbone pattern was used as a research object. The microstructure and fracture process of the powder metallurgy pattern steel decorative were investigated under two heat treatment states through SEM, EDS, XRD, hardness test, tensile test, bending test, and in-situ tensile test. The results show that the pattern is composed of black RWL34 with high C content and white PMC27 martensitic stainless steel with relatively low C content. The quenched matrix is martensite, the annealed matrix is ferrite, and the precipitation phases are all M23C6 carbides with Cr as the main component. The quenched powder metallurgy decorative pattern steel has excellent mechanical properties, which include high strength and good toughness. Under the action of tensile stress, the cracks is preferentially produced in the M23C6 carbides of the powder metallurgy decorative pattern steel under two heat treatment states, and then propagated along the carbide boundary in the RWL34 band, finally with more cracks connected, propagated and fractured.
Key words:  powder metallurgy decorative pattern steel    microstructure    M23C6 carbide    mechanical property    carbide cracking
出版日期:  2022-05-10      发布日期:  2022-05-09
ZTFLH:  TG113  
基金资助: 国家自然科学基金(51761027;51961024;52071170)
通讯作者:  caorui@lut.edu.cn   
作者简介:  李伟,2018年9月至2021年6月在兰州理工大学材料科学工程学院获工学硕士学位,以第一作者发表SCI论文2篇。主要从事先进金属材料制备、焊缝强韧性方面的研究。
曹睿,兰州理工大学,博士、教授、博士研究生导师。2003年6月兰州理工大学材料科学与工程学院参加工作至今。主要从事新材料、异种材料的焊接性、强韧性、腐蚀、变形、损伤及断裂行为研究等科研工作。发表SCI检索论文70余篇,中文核心期刊论文100余篇。
引用本文:    
李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
LI Wei, CAO Rui, YAN Yingjie. Microstructure, Properties and Tensile Fracture Behavior of Powder Metallurgy Decorative Pattern Steel in Different Heat Treatments. Materials Reports, 2022, 36(9): 21020104-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020104  或          http://www.mater-rep.com/CN/Y2022/V36/I9/21020104
1 Verhoeven J D, Peterson D T.Materials Characterization, 1992, 29( 4), 335.
2 Qian W. Science & Technology Review,2009(16),122(in Chinese).
潜伟.科技导报, 2009(16),122.
3 Peterson D T, Baker H H, Verhoeven J D.Materials Characterization, 1990, 24(4),355.
4 Xing L. Watch, 2005(6), 2(in Chinese).
兴力.钟表, 2005(6), 2.
5 Smith C S.Science, 1982, 216(4543), 242.
6 Sherby O D, Wadsworth J. Journal of Materials Processing Technology, 2001, 117(3), 347.
7 Verhoeven J D, Pendray A H. Materials Characterization, 2001, 47(5), 423.
8 Peterson D T, Baker H H, Verhoeven J D.Materials Characterization, 1990, 24(4),355.
9 Verhoeven J D, Baker H H, Peterson D T, et al. Materials Characterization, 1990, 24(3), 205.
10 Verhoeven J D, Pendray A H, Gibson E D. Materials Characterization, 1996, 37(1), 9.
11 Verhoeven J D, Pendray A H.Materials Characterization, 1993, 30(3), 175.
12 Verhoeven J D, Pendray A H, Berge P M.Materials Characterization, 1993, 30(3),187.
13 Luo H W, Qian W, Dong H. Chinese Science Bulletion, 2014, 59(9), 833(in Chinese).
罗海文, 潜伟, 董瀚.科学通报, 2014, 59(9), 833.
14 Sukhanov D A, Arkhangel'skii L B.Metallurgist, 2016, 59(9), 818.
15 Sukhanov D A, Arkhangel'skii L B, Plotnikova N V.Metallurgist, 2017, 61(1),40.
16 Sukhanov D A, Arkhangelsky L B, Plotnikova N V. Materials Science and Engineering, 2017, 175(1),012017.
17 Sukhanov D A, Arkhangelsky L B. Materials Sciences and Applications, 2017, 8(5),351.
18 Strobl S, Haubner R. Materials Science Forum, 2015, 825,852.
19 Strobl S, Haubner R, Scheiblechner W.Advanced Engineering Forum, 2018, 27, 14.
20 Grybenas A, Makarevičius V, Baltušnikas A, et al. Materials Science and Engineering: A, 2017, 696, 453.
21 Mazaheri Y, Jahanara A H, Sheikhi M, et al.Materials Science and Engineering: A, 2019, 761, 138021.
22 Xiao D, Qing S, Du S, et al. Mechanics Based Design of Structures and Machines,DOI.org/10.1080/15397734.2020.1794890
23 Chen J X.Advanced Materials Research, 2014, 834,345.
[1] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[2] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[3] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[4] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[5] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[6] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[7] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[8] 张显, 蔡明, 孙宝忠. 植物纤维增强复合材料的湿热老化研究进展[J]. 材料导报, 2022, 36(5): 20100169-11.
[9] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[10] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[11] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[12] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[13] 闫昭朴, 王扬卫, 张燕, 刘毅烽, 程焕武. 玄武岩纤维复合材料静、动态力学性能和抗弹性能研究进展[J]. 材料导报, 2022, 36(4): 20110209-9.
[14] 耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
[15] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed