Please wait a minute...
材料导报  2022, Vol. 36 Issue (4): 21010093-5    https://doi.org/10.11896/cldb.21010093
  金属与金属基复合材料 |
不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性
杨博恒, 钱辉*, 师亦飞, 康莉萍
郑州大学土木工程学院,郑州 450001
Stability of Mechanical Properties of Super-fine NiTi Shape Memory Alloy Wires Under Different Cyclic Training Conditions
YANG Boheng, QIAN Hui*, SHI Yifei, KANG Liping
School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China
下载:  全 文 ( PDF ) ( 3596KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 形状记忆合金(Shape memory alloys, SMA)具有优异的形状记忆效应、超弹性、耐疲劳、耐腐蚀以及电阻传感等特性,在航空航天、机械电子、生物医疗等领域得到广泛应用。已开发的SMA产品中, NiTi SMA超细丝因具有更为灵敏的电阻特性和灵活的应用环境,在结构健康监测及微型机电系统中有广阔的应用前景。为了获得性能稳定的NiTi SMA超细丝,对直径25 μm的常温马氏体SMA超细丝进行了循环加载试验,分析了训练方法、循环加卸载次数以及材料静置时间对NiTi超细丝的单圈滞回耗能能力、残余应变、割线刚度和等效阻尼比等力学参数的影响规律,同时对马氏体SMA的训练方法进行研究。试验结果表明,随着训练应变幅值和循环加、卸载次数的增加,马氏体状态SMA超细丝的去孪晶过程逐渐缩短,力学性能稳定性增强,且受静置时间影响的材料力学性能具有可恢复性,可为形状记忆合金超细丝在工程中应用提供试验基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨博恒
钱辉
师亦飞
康莉萍
关键词:  形状记忆合金超细丝  形状记忆效应  超弹性  力学性能  稳定性    
Abstract: The NiTi shape memory alloys (SMA) have been increasingly used in different domains, such as aerospace, automotive, robotic,and biomedical applications, for their unique properties. Among the developed SMA products, super-fine NiTi SMA wires have potential applications in structural health monitoring and micro-drive system due to their excellent shape memory effect, superelasticity and resistance characteristics, and so on. However, the stability of super-fine SMA wires is still a problem. Cyclic tensile tests of super-fine SMA wires (25 μm), which were martensite at room temperature, were conducted. The effects of the training process, cyclic loading-unloading numbers, and static treatment on the mechanical properties and stability of super-fine SMA wires were investigated. The mechanical parameters were analyzed with different trai-ning processes and cyclic loading-unloading numbers, such as residual strain, hysteretic energy, secant stiffness, and equivalent damping ratio. The results indicated that the detwinning process was shortened with the increase of training amplitudes and cyclic loading and unloading numbers, while austenitic mechanical properties were not affected. Methods for restoring mechanical properties of super-fine SMA wires after static treatment were proposed. The results of this paper can provide the experimental basis for the application of super-fine shape memory alloy wires in engineering.
Key words:  super-fine shape memory alloy wire    shape memory effect    superelasticity    mechanical properties    stability
出版日期:  2022-02-25      发布日期:  2022-02-28
ZTFLH:  TU352  
基金资助: 国家自然科学基金(51978631)
通讯作者:  qianhui@zzu.edu.cn   
作者简介:  杨博恒,郑州大学土木工程学院结构工程专业硕士研究生,在钱辉教授的指导下进行研究。目前主要研究领域为智能材料和结构健康监测。
钱辉,郑州大学教授,博士研究生导师,2008年博士毕业于大连理工大学,主要从事智能材料与高性能结构、结构健康监测方面的研究。
引用本文:    
杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
YANG Boheng, QIAN Hui, SHI Yifei, KANG Liping. Stability of Mechanical Properties of Super-fine NiTi Shape Memory Alloy Wires Under Different Cyclic Training Conditions. Materials Reports, 2022, 36(4): 21010093-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010093  或          http://www.mater-rep.com/CN/Y2022/V36/I4/21010093
1 Song G, Ma N, Li H N. Engineering Structures, 2006, 28(9), 1266.
2 Yang Jie, Wu Yuehua. Shape memory alloy and its application, Press of University of Science and Technology of China,China,1993,pp. 26(in Chinese).
杨杰,吴月华. 形状记忆合金及其应用, 中国科学技术大学出版社, 1993, pp. 26.
3 Janke L, Czaderski C, Motavalli M, et al. Materials and Structures/Materiaux et Constructions, 2005, 38(279), 578.
4 Sellitto A, Riccio A. Materials, 2019, 12(5), 708.
5 Lester B T, Baxevanis T, Chemisky Y, et al. Acta Mechanica, 2015, 226(12), 3907.
6 Huang Haoyu, Zhang Wenshao. Journal of Vibration and Shock, 2019, 38(18), 154(in Chinese).
黄浩宇,张纹韶. 振动与冲击, 2019, 38(18), 154.
7 Nahm S H, Kim Y J, Kim J M, et al. Materials Science Forum, 2005, 475-479, 2043.
8 Josephine S R D, Sunjai N S, Dhanalakshmi K. ISA Transactions, 2014, 53(2), 289.
9 Lu Y, Zhang R, Xu Y, et al. Materials, 2020, 13(6), 1479.
10 Cui Di,Li Hongnan,Song Gangbing. Journal of Building Materials, 2008, 11(5), 567(in Chinese).
崔迪,李宏男,宋钢兵. 建筑材料学报, 2008, 11(5), 567.
11 Yan Shi, Wang Qi, Wang Wei. Journal of Shenyang Jianzhu University (Natural Science), 2010,26(3), 458(in Chinese).
阎石, 王琦, 王伟. 沈阳建筑大学学报(自然科学版), 2010,26(3),458.
12 Desroches R, Mccormick J, Delemont M. Journal of Structural Enginee-ring, 2004, 130(1), 38.
13 Ren W J, Wang L Q, Jia J S, et al. Journal of Functional Materials, 2013, 44(2), 258(in Chinese).
任文杰,王利强,贾俊森,等. 功能材料, 2013, 44(2), 258.
14 Zuo X B, Li A Q, Ni L F, et al. China Civil Engineering Journal, 2004(12), 10(in Chinese).
左晓宝,李爱群,倪立峰,等. 土木工程学报, 2004(12), 10.
15 Kang L, Qian H, Guo Y, et al. Materials, 2020, 13(17), 3729.
16 Lu Q, He G Q,Chen S J, et al. Journal of Functional Materials, 2014(4), 4076(in Chinese).
卢棋,何国球,陈淑娟,等. 功能材料, 2014(4), 4076.
17 Qian H, Li H N, Song G B, et al. Chinese Journal of Solid Mechanics, 2011, 32(4), 353.(in Chinese).
钱辉,李宏男,宋钢兵,等. 固体力学学报, 2011, 32(4), 353.
18 Qian H, Li J B, Li H N, et al. Journal of Vibration and Shock, 2013, 32(24), 89(in Chinese).
钱辉,李静斌,李宏男,等. 振动与冲击, 2013, 32(24), 89.
19 Suhail R, Chen J F, Amato G, et al. Mechanics of Materials, 2020, 144, 103346.
20 Fang C, Zheng Y, Chen J, et al. Engineering Structures,2019,183,533.
21 Suhail R,Amato G,Mccrum D.Engineering Structures,2020,206,110128.
22 Zhuang P, Xue S D, Liu Y D, et al. Journal of Functional Materials, 2015(13),13007(in Chinese).
庄鹏, 薛素铎, 刘雨冬, 等. 功能材料, 2015(13),13007.
[1] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[2] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[3] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[4] 闫昭朴, 王扬卫, 张燕, 刘毅烽, 程焕武. 玄武岩纤维复合材料静、动态力学性能和抗弹性能研究进展[J]. 材料导报, 2022, 36(4): 20110209-9.
[5] 耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
[6] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[7] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[8] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[9] 欧阳柳章, 彭琢雅, 王辉, 刘江文, 朱敏. 三级金属氢化物氢压缩机设计及氢压缩材料的研究进展[J]. 材料导报, 2022, 36(1): 21030081-11.
[10] 赵燕春, 李暑, 李春玲, 赵鹏彪, 李文生, 寇生中, 阎峰云. 热处理对铁基中熵合金微观结构及力学性能的影响[J]. 材料导报, 2022, 36(1): 20090161-5.
[11] 杨东青, 王小伟, 彭勇, 周琦, 王克鸿. 超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究[J]. 材料导报, 2022, 36(1): 20120270-4.
[12] 杨佳行, 韩永典, 徐连勇. 瞬态电流键合对Sn-Ag-Cu钎料焊点界面反应的影响[J]. 材料导报, 2022, 36(1): 20100132-5.
[13] 欧珊, 牟自豪, 林涛, 李瑶, 冯威, 刘文龙. 两步法制备碳化钛薄膜及其电容性能[J]. 材料导报, 2021, 35(z2): 18-21.
[14] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[15] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed