Abstract: Nickel-based superalloys have the characteristics of high strength, good oxidation resistance, good creep strength and durability, and gas corrosion resistance. They are widely used in aerospace, automotive communications, shipbuilding and other fields. With the advancement of additive manufacturing technology in recent years, the development of additive manufacturing of nickel-based superalloys has been accelerated. Laser additive manufacturing has unique advantages for the manufacture of nickel-based superalloys, such as short production cycle, low cost, and function presets. It is very advantageous for the forming and manufacturing of complex parts, such as aero engines, gas turbine nozzles, combustion chambers, and aerospace vehicles. At present, the research hotspots in related aspects mainly include the change law of the solidification structure during the laser additive manufacturing process, the relationship between process parameters and the macroscopic shape of the molten pool, the analysis and exploration of residual stress, and the exploration of defects. This article reviews the research progress of additive manufacturing technology for preparing nickel-based superalloys, and briefly summarizes the development of additive manufacturing technology and nickel-based superalloys. The microstructure of the nickel-based superalloy formed parts manufactured by additive manufacturing, the change of the microstructure after post-treatment, and the influence on the mechanical properties are summarized. Finally, the defects of additive manufacturing parts and their solutions are described.
1 Liu K, Sun H J, Wang J, et al. Advanced Ceramics, 2017, 38(4), 286(in Chinese). 刘凯, 孙华君, 王江, 等. 现代技术陶瓷, 2017, 38(4), 286. 2 Zhou R Y,Shuai M B, Jiang C. Materials Reports A:Review Papers, 2016, 30(1), 67(in Chinese). 周汝垚, 帅茂兵, 蒋驰. 材料导报:综述篇, 2016, 30(1), 67. 3 Liao W J, Hu J. The Magazine on Equipment Machinery, 2015(1), 1 (in Chinese). 廖文俊, 胡捷. 装备机械, 2015(1), 1. 4 Liao W J, Fan E X, Fu C. Materials for Mechanical Engineering, 2018, 42(7), 16 (in Chinese). 廖文俊, 樊恩想, 付超. 机械工程材料, 2018, 42(7), 16. 5 Hu Z N, Zhang Y T, Wang N N. Shandong Coal Science and Technology, 2014(8), 95 (in Chinese). 胡振南, 张玉堂, 王娜娜. 山东煤炭科技, 2014(8), 95. 6 Lan F, Liang Y J, Huang B B. Equipment Manufacturing Technology, 2018(5), 43(in Chinese). 兰芳, 梁艳娟, 黄斌斌. 装备制造技术, 2018(5), 43. 7 Le G M, Li Q, Dong X F, et al. Rare Metal Materials and Engineering, 2017, 46(4), 1162(in Chinese). 乐国敏, 李强, 董鲜峰, 等. 稀有金属材料与工程, 2017, 46(4), 1162. 8 Yao F L. Mechanical Management and Development, 2019(8), 116(in Chinese). 姚福龙. 机械管理开发, 2019(8), 116. 9 Wang D, Qian Z Y, Dou W H, et al. Aeronautical Manufacturing Technology, 2018, 61(10), 49 (in Chinese). 王迪, 钱泽宇, 窦文豪, 等. 航空制造技术, 2018, 61(10), 49. 10 Tang Z J, Guo T M, Fu Y, et al. Metal World, 2014, 1(4), 36 (in Chinese). 唐中杰, 郭铁明, 付迎, 等. 金属世界, 2014, 1(4), 36. 11 Wu K, Zhang J L, Wu B, et al. Journal of Iron & Steel Research, 2017, 29(12), 953. 12 Gan Z, Liu H, Li S, et al. International Journal of Heat and Mass Transfer, 2017, 111, 709. 13 Seidel A, Finaske T, Straubel A, et al. Metallurgical and Materials Transactions: A, 2018, 49(9), 3812. 14 Zhang Y Z, Hou H P, Peng S, et al. Journal of Aeronautical Materials, 2018, 38(6), 50 (in Chinese). 张永志, 侯慧鹏, 彭霜, 等. 航空材料学报, 2018, 38(6), 50. 15 Wu W H, Yang Y Q, Mao G S. Manufacturing Technology & Machine Tool, 2014(4), 46 (in Chinese). 吴伟辉, 杨永强, 毛桂生. 制造技术与机床, 2014(4), 46. 16 Chen M Y, Bai P C, Zhang A F, et al. Materials Reports, 2015, 29(20), 105 (in Chinese). 陈梦洋, 白朴存, 张安峰, 等. 材料导报, 2015, 29(20), 105. 17 Vilaro T, Colin C, Bartout J D, et al. Materials Science and Engineering: A, 2012, 534, 446. 18 Chen X J, Zhao G R, Dong D D, et al. Chinese Journal of Lasers, 2019, 46(12), 1202002(in Chinese). 陈秀娟, 赵国瑞, 董东东, 等. 中国激光, 2019, 46(12), 1202002. 19 Choi J P, Shin G H, Yang S, et al. Powder Technology, 2017, 310, 60. 20 Zuo W, Zhang Q M, Wu W J, et al. Journal of Rocket Propulsion, 2017, 43(1), 55 (in Chinese). 左蔚, 张权明, 吴文杰, 等. 火箭推进, 2017, 43(1), 55. 21 Lin X, Yang H O, Chen J, et al. Acta Metallurgica Sinica, 2006, 42(4), 361(in Chinese). 林鑫, 杨海欧, 陈静, 等. 金属学报, 2006, 42(4), 361. 22 Lv H , Yang Z B, Wang X, et al. Chinese Journal of Lasers, 2018, 45(10), 1002003(in Chinese). 吕豪, 杨志斌, 王鑫, 等. 中国激光, 2018, 45(10), 1002003. 23 Chlebus E, Gruber K, Kuznicka B, et al. Materials Science and Engineering: A, 2015, 639 (15), 647. 24 Brynk T, Pakiela Z,Ludwichowska K. Materials Science and Engineering: A, 2017, 698, 289. 25 Tomus D, Yang T, Rometsch P A, et al. Materials Science and Enginee-ring: A, 2016, 667 (14), 42. 26 Li Y L, Lei L M, Hou H P, et al. Journal of Materials Engineering, 2019, 47(5), 100 (in Chinese). 李雅莉, 雷力明, 侯慧鹏, 等. 材料工程, 2019, 47(5), 100. 27 Deng X Y, Lu S Q, Wang Y C, et al. Special Casting & Nonferrous Alloys, 2017, 37(8), 878 (in Chinese). 邓晓阳, 鲁世强, Wang Yachao, 等. 特种铸造及有色合金, 2017, 37(8), 878. 28 Huang W P, Yu H C, Yin J , et al. Acta Metallurgica Sinica, 2016, 52(9), 1089 (in Chinese). 黄文普, 喻寒琛, 殷杰,等. 金属学报, 2016, 52(9), 1089. 29 Graybill B, Li M, Malawey D, et al. In: ASME 2018 13th International Manufacturing Science and Engineering Conference, 2018, pp. 1. 30 Zhao W W, Lin X, Liu F C, et al. Chinese Journal of Lasers, 2009, 36(12), 3220 (in Chinese). 赵卫卫, 林鑫, 刘奋成,等. 中国激光, 2009, 36(12), 3220. 31 Pang X T, Cheng X, Tian X J, et al. Rare Metal Materials and Enginee-ring, 2019(5), 1615(in Chinese). 庞小通, 程序, 田象军, 等. 稀有金属材料与工程, 2019(5), 1615. 32 Liu K, Wang R, Qi H, et al. Physical Testing and Chemical Analysis(Part A:Physical Testing), 2019, 55(1), 15(in Chinese). 刘凯, 王荣, 祁海, 等. 理化检验:物理分册, 2019, 55(1), 15. 33 Zuo W, Zhang Q M, Lei Y, et al. Journal of Rocket Propulsion, 2017, 43(3), 53 (in Chinese). 左蔚, 张权明, 雷玥, 等. 火箭推进, 2017, 43(3), 53. 34 Yao Y S, Wang J, Chen Q B, et al. Laser & Optoelectronics Progress, 2019, 56(10), 45 (in Chinese). 姚燕生, 汪俊, 陈庆波, 等. 激光与光电子学进展, 2019, 56(10), 45. 35 Du C, Zhang J, Lian Y, et al. Surface Technology, 2019, 48(1), 200 (in Chinese). 杜畅, 张津, 连勇, 等. 表面技术, 2019, 48(1), 200. 36 Moat R J, Pinkerton A J, Li L, et al. Materials Science and Engineering: A, 2011, 528(6), 2288. 37 Parimi L L, Attallah M M, Gebelin J, et al. Superalloys 2012, 2012, 509. 38 Klingbeil N W, Beuth J L, Chin R, et al. International Journal of Mechanical Sciences, 2002, 44(1), 57. 39 Prabhakar P, Sames W J, Dehoff R, et al. Additive Manufacturing, 2015, 7, 83. 40 Bi Z N, Qin H L, Dong Z G, et al. Acta Metallurgica Sinica, 2019, 55(9), 1160 (in Chinese). 毕中南, 秦海龙, 董志国, 等. 金属学报, 2019, 55(9), 1160. 41 Zhang J, Li S, Wei Q S, et al. Chinese Journal of Rare Metals, 2015, 39(11), 961 (in Chinese). 张洁, 李帅, 魏青松, 等. 稀有金属, 2015, 39(11), 961. 42 Vrancken B, Cain V, Knutsen R, et al. Scripta Materialia, 2014, 87(1), 29. 43 Yang Q Y, Wu Y D, Sha F. Materials for Mechanical Engineering, 2016, 40(6), 83 (in Chinese). 杨启云, 吴玉道, 沙菲. 机械工程材料, 2016, 40(6), 83. 44 Ahsan M N, Pinkerton A J, Moat R J, et al. Materials Science and Engineering: A, 2011, 528 (25-26), 7648. 45 Shi Q, Gu D, Xia M, et al. Optics & Laser Technology, 2016, 84, 9. 46 Yuan X B, Wei Q S, Wen S F, et al. Hot Working Technology, 2014, 43(4), 91(in Chinese). 袁学兵, 魏青松, 文世峰, 等. 热加工工艺, 2014, 43(4), 91. 47 Li Y, Qi H, Hou H, et al. Materials and structural engineering (ICMMSE 2017), Atlantis Press, 2017. 48 Carter L N, Martin C, Withers P J, et al. Journal of Alloys and Compounds, 2014, 615, 338. 49 Amato K N, Gaytan S M, Murr L E, et al. Acta Materialia, 2012, 60(5), 2229. 50 Parimi L L, Ravi G A, Clark D, et al. Attallah, Materials Characterization, 2014, 89, 102.