Please wait a minute...
材料导报  2022, Vol. 36 Issue (5): 20090345-5    https://doi.org/10.11896/cldb.20090345
  无机非金属及其复合材料 |
磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响
褚洪岩1, 高李1, 秦健健1, 汤金辉2, 蒋金洋2
1 南京林业大学土木工程学院,南京 210037
2 东南大学材料科学与工程学院,南京 211189
Effects of Graphene Sulfonate Nanosheets on Mechanical Properties and Durability of Ultra-high Performance Concrete Produced by Recycled Sand
CHU Hongyan1, GAO Li1, QIN Jianjian1, TANG Jinhui2, JIANG Jinyang2
1 College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
2 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
下载:  全 文 ( PDF ) ( 7174KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 鉴于利用再生砂制备超高性能混凝土(UHPC)会导致其性能劣化,采用磺化石墨烯(GSN)来改善再生砂UHPC(RS-UHPC)的相关性能,探究不同掺量的GSN对RS-UHPC力学性能和耐久性能的影响,还研究了GSN对RS-UHPC孔结构的影响。研究表明:(1)GSN能使RS-UHPC的孔隙率降低3.75%~10.24%;(2)GSN能使RS-UHPC的抗压强度、抗折强度、弹性模量分别提高3.24%~14.72%、5.21%~20.09%、3.56%~11.84%;(3)GSN能明显提高RS-UHPC的抗冻融性能和抗氯离子渗透性;(4)综合考虑GSN对RS-UHPC的孔结构、力学性能和耐久性能的影响,GSN在RS-UHPC中的优选掺量为0.06%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
褚洪岩
高李
秦健健
汤金辉
蒋金洋
关键词:  超高性能混凝土  再生砂  力学性能  耐久性  磺化石墨烯  孔结构    
Abstract: Using recycled sand to produce ultra-high performance concrete (UHPC) deteriorates its mechanical properties and durability. The properties of UHPC produced by recycled sand (RS-UHPC) could be improved by adding graphene sulfonate nanosheets (GSN). The study was aimed to investigate the effects of the GSN on the mechanical properties and durability of RS-UHPC, and the influence of the GSN on the pore structure of RS-UHPC was also studied. It was found that, (1) the porosity of RS-UHPC was reduced by 3.75%—10.24%, due to the addition of GSN; (2) the compressive strength, flexural strength, and elastic modulus of RS-UHPC were increased by 3.24%—14.72%, 5.21%—20.09%, and 3.56%—11.84%, respectively, because of the use of GSN; (3) the freeze-thaw resistance of the RS-UHPC and the resistance of the RS-UHPC to penetration of chloride ions were significantly improved, due to the incorporation of GSN; (4) the optimal content of GSN was 0.06%, considering the effects of GSN on the pore structure, mechanical properties, and durability of RS-UHPC.
Key words:  ultra-high performance concrete    recycled sand    mechanical property    durability    graphene sulfonate nanosheets    pore structure
出版日期:  2022-03-10      发布日期:  2022-03-08
ZTFLH:  TU528.09  
基金资助: 国家自然科学基金(51808294);江苏省高等学校自然科学研究基金(18KJB430017)
通讯作者:  chuhongyan@njfu.edu.cn   
作者简介:  褚洪岩,南京林业大学土木工程学院,副教授。2017年毕业于东南大学,获得工学博士学位,主要从事高性能土木工程材料研发工作,重点研究新型核电牺牲材料和绿色超高性能水泥基材料的制备、表征及应用。
引用本文:    
褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
CHU Hongyan, GAO Li, QIN Jianjian, TANG Jinhui, JIANG Jinyang. Effects of Graphene Sulfonate Nanosheets on Mechanical Properties and Durability of Ultra-high Performance Concrete Produced by Recycled Sand. Materials Reports, 2022, 36(5): 20090345-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090345  或          http://www.mater-rep.com/CN/Y2022/V36/I5/20090345
1 Chu H Y, Zhang Y, Wang F J, et al. Nanomaterials, 2020, 10, 1718.
2 Zhao S, Sun W. Construction and Building Materials, 2014, 63, 150.
3 Kisku N, Joshi H, Ansari M, et al. Construction and Building Materials, 2017, 131, 721.
4 Silva R V, De Brito J, Dhir R K.Journal of Cleaner Production, 2016, 112, 2171.
5 Fan C, Huang R, Chao S. Construction and Building Materials, 2016, 112, 708.
6 McGinnis M J, Davis M, de la Rosa A, et al. Construction and Building Materials, 2017, 154, 258.
7 Guo H, Shi C, Guan X, et al.Cement and Concrete Composites, 2018, 89, 251.
8 Limbachiya M C, Meddah M S, Ouchagour Y.Construction and Building Materials, 2012, 27, 439.
9 Sim J, Park C. Waste Management, 2011,31(11), 2352.
10 Adessina A, Fraj A B, Barthelemy J F, et al. Cement and Concrete Research, 2019, 126, 105900.
11 Jiang J, Zhou W, Gao Y, et al.Waste Management, 2019, 83, 104.
12 Yu L Z, Wu R X. Construction and Building Materials, 2020, 259, 120657.
13 Ge X L, Chu H Y. Journal of Building Materials, 2020, 23(4), 810(in Chinese).
葛晓丽, 褚洪岩. 建筑材料学报, 2020, 23(4), 810.
14 Nunes C, Slizkova Z, Stefanidou M, et al. Cement and Concrete Research, 2016, 83, 152.
15 Menga T, Yub Y, Qiana X, et al.Construction and Building Materials, 2012, 29, 241.
16 Alessandro A D, Rallini M, Ubertini F, et al.Cement and Concrete Composites, 2016, 65, 200.
17 Newell M, Garcia-Taengua E. Construction and Building Materials, 2019, 221, 433.
18 Chu H Y, Ge X, Jiang J Y, et al. Construction and Building Materials, 2018, 191, 69.
19 Chu H, Jiang J Y, Sun W, et al. Cement and Concrete Composites, 2017, 82, 252.
20 Chu H Y, Jiang J Y, Sun W, et al. Construction and Building Materials, 2017, 153, 682.
21 Tang J H. Influence of toughing materials on hydration mechanism and mechanical properties of cement based materials. Ph.D. Thesis, Sout-heast University, China, 2018(in Chinese).
汤金辉. 增韧材料对水泥水化机制及力学性能影响. 博士学位论文, 东南大学, 2018.
22 Chu H Y. Preparation and thermal behavior of sacrificial concrete with graphene nanosheets and molten core concrete interaction. Ph.D. Thesis, Southeast University, China, 2017(in Chinese).
褚洪岩. 石墨烯改性牺牲混凝土制备、高温性能及与堆芯熔融物相互作用研究. 博士学位论文, 东南大学, 2017.
23 Chu H Y, Wang F, Wang L, et al. Materials, 2020, 13, 3148.
24 Tang J, Yu C, Wang R, et al. Construction and Building Materials, 2019, 206, 600.
25 Soliman N A, Tagnit-Hamou A. Construction and Building Materials, 2017, 139, 374.
26 Su Y, Wu C, Li J, et al. Construction and Building Materials, 2017, 135, 517.
27 Chu H Y, Jiang J Y, Li H, et al. Materials Reports B:Research Papers, 2020, 34(12), 24029(in Chinese).
褚洪岩, 蒋金洋, 李荷, 等. 材料导报:研究篇, 2020, 34(12), 24029.
[1] 单广程, 陈健, 乔敏, 高南箫, 赵爽, 吴井志, 朱伯淞, 冉千平. 缓释技术在混凝土中的应用研究进展[J]. 材料导报, 2022, 36(5): 20050237-7.
[2] 黄时玉, 霍彬彬, 陈春, 张亚梅. 蒸养条件下偏高岭土对钢渣水泥基复合体系水化的影响[J]. 材料导报, 2022, 36(5): 21010187-6.
[3] 马俊军, 蔺鹏臻. 基于细观尺度的UHPC氯离子扩散预测CA模型[J]. 材料导报, 2022, 36(5): 21040188-6.
[4] 张显, 蔡明, 孙宝忠. 植物纤维增强复合材料的湿热老化研究进展[J]. 材料导报, 2022, 36(5): 20100169-11.
[5] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[6] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[7] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[8] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[9] 闫昭朴, 王扬卫, 张燕, 刘毅烽, 程焕武. 玄武岩纤维复合材料静、动态力学性能和抗弹性能研究进展[J]. 材料导报, 2022, 36(4): 20110209-9.
[10] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[11] 耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
[12] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[13] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[14] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[15] 欧阳柳章, 彭琢雅, 王辉, 刘江文, 朱敏. 三级金属氢化物氢压缩机设计及氢压缩材料的研究进展[J]. 材料导报, 2022, 36(1): 21030081-11.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed