Please wait a minute...
材料导报  2022, Vol. 36 Issue (5): 21040188-6    https://doi.org/10.11896/cldb.21040188
  无机非金属及其复合材料 |
基于细观尺度的UHPC氯离子扩散预测CA模型
马俊军, 蔺鹏臻
兰州交通大学土木工程学院,兰州 730070
Prediction CA Model of UHPC Chloride Ion Diffusion Based on a Mesoscopic Scale
MA Junjun, LIN Pengzhen
School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
下载:  全 文 ( PDF ) ( 5219KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用Monte Carlo方法建立了超高性能混凝土(UHPC)细观随机骨料模型,在此基础上,考虑材料组分和骨料等随机分布对氯离子扩散效应的影响,提出了基于细观尺度的UHPC氯离子侵蚀预测CA模型。利用CA模型对四种不同配比的UHPC的氯离子侵蚀过程进行了模拟,并将模型模拟结果与Fick第二定律解析解和试验值进行了比较。研究结果表明:本工作所提出的CA模型能够反映骨料、纤维、界面过渡区的随机分布对氯离子扩散效应的影响;CA模型能准确描述截面平均氯离子浓度随深度的变化以及不同深度处氯离子浓度的详细概率分布;氯离子在UHPC截面内的分布大致可分为快速下降、平稳下降和稳定三个阶段;提出的模型和方法对氯盐等腐蚀性环境下UHPC结构的耐久性设计具有一定的借鉴意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马俊军
蔺鹏臻
关键词:  超高性能混凝土  细观尺度  氯离子侵蚀  元胞自动机  预测模型    
Abstract: Amicroscopic random aggregate model of ultra-high performance concrete (UHPC) was developed based on the Monte Carlo method in this research. A microscale CA model, considering the influence of the random distributions of material composition and aggregate on the diffusion of chloride ions, was proposed for predicting chloride ion erosion on UHPC. Chloride ion erosion processes in UHPC with 4 different ratios were simulated, respectively. In addition, the simulation results were compared with the analytical solution achieved by Fick's second law and the experimental results. The results showed that the influence of the random distributions of aggregate, fiber, and interface transition zone for the chloride diffusion effect can be reflected by the CA model. The developed model can not only accurately represent the variation of the average chloride ion concentration of cross-section with depth, but also give the detailed probability distribution of chloride ion concentration at different depths. There are three distinct stages of chloride ions distribution in the UHPC section, including rapid descending stage, steady descending stage, and stable stage. The proposed model and method have certain reference significance to durability design of UHPC structures in chloride corrosion environment.
Key words:  ultra-high performance concrete    microscale    chloride ion erosion    cellular automata    prediction model
出版日期:  2022-03-10      发布日期:  2022-03-08
ZTFLH:  TU528  
基金资助: 国家自然科学基金高铁联合基金项目(U1934205);国家自然科学基金项目(51878323);甘肃省建设科技攻关项目(JK2021-03); 甘肃省教育科技创新项目(2021CXZX-568);甘肃省教育厅青年博士基金项目(2021QB-056)
通讯作者:  pzhlin@mail.lzjtu.cn   
作者简介:  马俊军,男,兰州交通大学桥梁与隧道工程专业博士研究生,主要从事桥梁结构耐久性、桥梁结构状态评估与加固的学习与应用研究。
蔺鹏臻,兰州交通大学土木工程系教授。现任兰州交通大学科技处处长。甘肃省首批“飞天学者”特聘教授,甘肃省科技领军人才,詹天佑铁道科学技术奖(青年奖)、茅以升科学技术奖(铁道科技奖),教育部“长江学者与创新团队发展计划”创新团队核心成员,甘肃省基础研究创新群体带头人,主要从事桥梁结构设计理论与施工技术领域的教学和科研工作。
引用本文:    
马俊军, 蔺鹏臻. 基于细观尺度的UHPC氯离子扩散预测CA模型[J]. 材料导报, 2022, 36(5): 21040188-6.
MA Junjun, LIN Pengzhen. Prediction CA Model of UHPC Chloride Ion Diffusion Based on a Mesoscopic Scale. Materials Reports, 2022, 36(5): 21040188-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040188  或          http://www.mater-rep.com/CN/Y2022/V36/I5/21040188
1 Yang Lufeng, Zhou Ming, Chen Zheng.China Civil Engineering Journal, 2014, 47(10), 70(in Chinese).
杨绿峰, 周明, 陈正.土木工程学报, 2014, 47(10), 70.
2 Bao Jiuwen, Wei Jianan, Zhang Peng, et al. Journal of the Chinese Ceramic Society, 2020, 48(5), 689(in Chinese).
鲍玖文, 魏佳楠, 张鹏, 等.硅酸盐学报, 2020, 48(5), 689.
3 De Larrard F, Sedran T.Cement and Concrete Research, 1994, 24(6), 997.
4 Shi C, Wu Z, Xiao J, et al. Construction and Building Materials, 2015, 101, 741.
5 Zhang Yang, Dang Qi, Mu Cheng.Journal of Hunan University(Natural Sciences), 2017, 44(3), 8(in Chinese).
张阳, 党祺, 穆程. 湖南大学学报(自然科学版), 2017, 44(3), 8.
6 Pyo S, Tafesse M, Kim H, et al. Cement and Concrete Composites, 2017, 84, 175.
7 Roux N, Andrade C, Sanjuan M.Journal of Materials in Civil Enginee-ring, 1996, 8(1), 1.
8 Wang Yue, An Mingzhe, Yu Ziruo.Journal of Building Materials, 2016, 19(5), 810(in Chinese).
王月, 安明喆, 余自若. 建筑材料学报, 2016, 19(5), 810.
9 Denarié E, Brühwiler E. In: 7th Workshop on High Performance Fiber Reinforced Cement Composites. Stuttgart, 2015.
10 Pyo S, Koh T, Tafesse M, et al. Construction and Building Materials, 2019, 224, 206.
11 Bao Y, Meng W, Chen Y, et al. Materials Letters, 2015, 145, 344.
12 Bao Y, Valipour M, Meng W, et al. Smart Materials and Structures, 2017, 26(8), 085009.
13 Yu Hongfa, Sun Wei. Journal of Southeast University (Natural Science Edition), 2006, 36(2), 68(in Chinese).
余红发, 孙伟.东南大学学报(自然科学版), 2006, 36(2), 68.
14 Bai Yu, Tang Mengjie, Dong Jun, et al. Mathematics in Practice and Theory, 2019, 49(23), 99(in Chinese).
白羽,汤梦洁,董军, 等.数学的实践与认识, 2019, 49(23), 99.
15 Jin Libing, Wang Zhen, Zhang Qingzhang, et al. Journal of Henan University(Natural Science), 2020, 50(3), 347(in Chinese).
金立兵,王珍,张庆章,等.河南大学学报(自然科学版), 2020, 50(3), 347.
16 Liu Ziran, Yuan Chunkun, Li Shisen, et al. Journal of Waterway and Harbor, 2021, 42(1), 94(in Chinese).
柳子然,袁春坤,李世森, 等. 水道港口, 2021, 42(1), 94.
17 Juliano P V, Thomas S, Vicky T, et al. Cement and Concrete Research, 2019, 117, 38.
18 Ma Xinwei, Xue Huan, Qi Jinming, et al. Journal of Shenyang Jianzhu University(Natural Science), 2018, 34(1), 22(in Chinese).
马新伟, 薛欢, 祁锦明, 等. 沈阳建筑大学学报(自然科学版), 2018, 34(1), 22.
19 Ma Junjun, Lin Pengzhen.Journal of Yangtze River Scientific Research Institute, 2019, 36(6), 121(in Chinese).
马俊军, 蔺鹏臻. 长江科学院院报, 2019, 36(6), 121.
20 Biondini F, Bontempi F, Frangopol D M, et al. Journal of Structural Engineering, 2004, 130(11), 1724.
21 Shane J D, Mason T O, Jennings H M, et al.Journal of the American Ceramic Society, 2000, 83(5), 1137.
22 Gu Kunpeng, Wang Chengqi, Shi Beiling. Industrial Construction, 2008(8), 59(in Chinese).
谷坤鹏,王成启,时蓓玲.工业建筑, 2008(8), 59.
23 Du Xiuli, Jin Liu, Ma Guowei.Finite Elements in Analysis and Design, 2014, 85, 87.
24 Šavija B, Pacheco J, Schlangen E.Cement and Concrete Composites, 2013, 42, 30.
25 Jin Liu. Study on meso-scopic model and analysis method of concrete. Ph.D. Thesis, Beijing University of Technology, China, 2014(in Chinese).
金浏. 细观混凝土分析模型与方法研究.博士学位论文,北京工业大学, 2014.
26 Zhao S, Sun W.Construction and Building Materials, 2014, 63, 150.
27 Dobiáš D, Pernicová R.Advanced Materials Research, 2015, 1106, 21.
28 Piérard J, Bram D, Niki C. In: Symposium on Ultra-High Performance Fibre-Reinforced Concrete. Marseille, 2013, pp. 275.
[1] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[2] 张显, 蔡明, 孙宝忠. 植物纤维增强复合材料的湿热老化研究进展[J]. 材料导报, 2022, 36(5): 20100169-11.
[3] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[4] 张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土的电阻率模型[J]. 材料导报, 2022, 36(1): 20100189-6.
[5] 杨玉柱, 黄维蓉, 耿嘉庆, 崔通, 晏茂豪. 基于半经验的UHPC配合比设计方法[J]. 材料导报, 2021, 35(z2): 188-193.
[6] 苏昊, 杨俊, 周建庭, 王劼耘, 王宗山, 马兴林. 基于DIC的UHPC加固锈蚀钢筋混凝土柱轴心受压性能研究[J]. 材料导报, 2021, 35(z2): 194-199.
[7] 魏建峰, 宋铁鹏, 王国承. 钢凝固过程元素偏析和夹杂物生成预报模型研究进展[J]. 材料导报, 2021, 35(Z1): 454-461.
[8] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[9] 张敏, 郭宇飞, 黄超, 张立胜, 张文辉. Ti-6Al-4V三元合金焊接熔池凝固组织模拟[J]. 材料导报, 2021, 35(8): 8116-8120.
[10] 鲍玖文, 庄智杰, 张鹏, 魏佳楠, 高嵩, 赵铁军. 基于相似性的海洋潮汐区环境混凝土抗氯盐侵蚀性能研究进展[J]. 材料导报, 2021, 35(7): 7087-7095.
[11] 张戎令, 郝兆峰, 王起才, 马丽娜, 吕文达, 李文波. 核心混凝土缺陷对钢管混凝土构件徐变影响规律及预测模型研究[J]. 材料导报, 2021, 35(4): 4099-4104.
[12] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[13] 吕斌, 李志强, 杨智勇, 刘小龙, 李卫京, 韩建民. 电渣重熔工艺对GCr15轴承钢凝固组织的影响[J]. 材料导报, 2021, 35(24): 24134-24141.
[14] 权长青, 焦楚杰, 杨云英, 郭伟. 油页岩渣对混凝土抗压强度和抗氯离子侵蚀的影响[J]. 材料导报, 2021, 35(22): 22079-22084.
[15] 张戎令, 郝兆峰, 祁强, 王起才, 马丽娜, 黄国栋. 考虑温度变化的钢管混凝土徐变试验研究及预测模型[J]. 材料导报, 2021, 35(20): 20028-20034.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed